HostClassifier / app.py
hiyata's picture
Update app.py
7e92f7c verified
raw
history blame
9.86 kB
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
def parse_fasta(text):
"""Parse FASTA formatted text into a list of (header, sequence)."""
sequences = []
current_header = None
current_sequence = []
for line in text.strip().split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert a sequence to a k-mer frequency vector."""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
def calculate_shap_values(model, x_tensor):
"""
Calculate SHAP values using a simple ablation approach.
Returns shap values and model prediction.
"""
model.eval()
with torch.no_grad():
# Get baseline prediction
baseline_output = model(x_tensor)
baseline_probs = torch.softmax(baseline_output, dim=1)
baseline_prob = baseline_probs[0, 1].item() # Probability of human class
# Calculate impact of zeroing each feature
shap_values = []
x_zeroed = x_tensor.clone()
for i in range(x_tensor.shape[1]):
x_zeroed[0, i] = 0
output = model(x_zeroed)
probs = torch.softmax(output, dim=1)
prob = probs[0, 1].item()
impact = baseline_prob - prob # How much removing the feature changed the prediction
shap_values.append(impact)
x_zeroed[0, i] = x_tensor[0, i] # Restore the original value
return np.array(shap_values), baseline_prob
def create_importance_bar_plot(shap_values, kmers, top_k=10):
"""Create a bar plot of the most important k-mers."""
plt.rcParams.update({'font.size': 10})
plt.figure(figsize=(10, 6))
# Sort by absolute importance
indices = np.argsort(np.abs(shap_values))[-top_k:]
values = shap_values[indices]
features = [kmers[i] for i in indices]
colors = ['#ff9999' if v > 0 else '#99ccff' for v in values]
plt.barh(range(len(values)), values, color=colors)
plt.yticks(range(len(values)), features)
plt.xlabel('SHAP value (impact on model output)')
plt.title(f'Top {top_k} Most Influential k-mers')
plt.gca().invert_yaxis() # Most important at top
return plt.gcf()
def visualize_sequence_impacts(sequence, kmers, shap_values, base_prob):
"""
Create a SHAP-style visualization of sequence impacts.
Shows each k-mer's contribution in context.
"""
k = 4 # k-mer size
kmer_dict = {km: i for i, km in enumerate(kmers)}
# Find all k-mers and their impacts
kmer_impacts = []
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
impact = shap_values[kmer_dict[kmer]]
kmer_impacts.append((i, kmer, impact))
# Sort by absolute impact
kmer_impacts.sort(key=lambda x: abs(x[2]), reverse=True)
# Create the plot
fig = plt.figure(figsize=(20, max(10, len(kmer_impacts[:30])*0.3)))
ax = plt.gca()
# Add title and base value
plt.text(0.01, 1.02, f"base value = {base_prob:.3f}", transform=ax.transAxes, fontsize=12)
# Plot k-mers
y_position = 1
sequence_length = len(sequence)
for pos, kmer, impact in kmer_impacts[:30]: # Show top 30 most impactful k-mers
# Show sequence with highlighted k-mer
pre_sequence = sequence[:pos]
post_sequence = sequence[pos+k:]
# Choose color based on impact
color = '#ffcccb' if impact > 0 else '#cce0ff' # Light red or light blue
arrow = '↑' if impact > 0 else '↓'
# Calculate text positions
plt.text(0.01, y_position, pre_sequence, fontsize=10)
plt.text(0.01 + len(pre_sequence)/(sequence_length*1.5), y_position,
kmer, fontsize=10, bbox=dict(facecolor=color, alpha=0.3, pad=2))
plt.text(0.01 + (len(pre_sequence) + len(kmer))/(sequence_length*1.5),
y_position, post_sequence, fontsize=10)
# Add impact value
plt.text(0.8, y_position, f"{arrow} {impact:+.3f}", fontsize=10)
y_position -= 0.03
plt.axis('off')
plt.tight_layout()
return fig
def predict(file_obj, top_kmers=10, fasta_text=""):
"""Main prediction function for Gradio interface."""
# Handle input
if fasta_text.strip():
text = fasta_text.strip()
elif file_obj is not None:
try:
with open(file_obj, 'r') as f:
text = f.read()
except Exception as e:
return f"Error reading file: {str(e)}", None, None
else:
return "Please provide a FASTA sequence.", None, None
# Parse FASTA
sequences = parse_fasta(text)
if not sequences:
return "No valid FASTA sequences found.", None, None
header, seq = sequences[0]
# Load model and process sequence
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
try:
model = VirusClassifier(256).to(device)
model.load_state_dict(torch.load('model.pt', map_location=device, weights_only=True))
scaler = joblib.load('scaler.pkl')
except Exception as e:
return f"Error loading model: {str(e)}", None, None
# Generate features
freq_vector = sequence_to_kmer_vector(seq)
scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
x_tensor = torch.FloatTensor(scaled_vector).to(device)
# Calculate SHAP values and get prediction
shap_values, prob_human = calculate_shap_values(model, x_tensor)
# Generate result text
results = [
f"Sequence: {header}",
f"Prediction: {'Human' if prob_human > 0.5 else 'Non-human'} Origin",
f"Confidence: {max(prob_human, 1-prob_human):.3f}",
f"Human Probability: {prob_human:.3f}",
"\nTop Contributing k-mers:"
]
# Get k-mers for visualization
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
# Create visualizations
importance_plot = create_importance_bar_plot(shap_values, kmers, top_kmers)
sequence_plot = visualize_sequence_impacts(seq, kmers, shap_values, prob_human)
# Convert plots to images
def fig_to_image(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
buf.seek(0)
img = Image.open(buf)
plt.close(fig)
return img
return "\n".join(results), fig_to_image(importance_plot), fig_to_image(sequence_plot)
# Create Gradio interface
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
"""
with gr.Blocks(css=css) as iface:
gr.Markdown("""
# Virus Host Classifier
Predicts whether a viral sequence is of human or non-human origin using k-mer analysis.
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload FASTA file",
file_types=[".fasta", ".fa", ".txt"],
type="filepath"
)
text_input = gr.Textbox(
label="Or paste FASTA sequence",
placeholder=">sequence_name\nACGTACGT...",
lines=5
)
top_k = gr.Slider(
minimum=5,
maximum=30,
value=10,
step=1,
label="Number of top k-mers to display"
)
submit_btn = gr.Button("Analyze Sequence", variant="primary")
with gr.Column(scale=2):
results = gr.Textbox(label="Analysis Results", lines=10)
kmer_plot = gr.Image(label="K-mer Importance Plot")
shap_plot = gr.Image(label="Sequence Impact Visualization (SHAP-style)")
submit_btn.click(
predict,
inputs=[file_input, top_k, text_input],
outputs=[results, kmer_plot, shap_plot]
)
gr.Markdown("""
### Visualization Guide
- **K-mer Importance Plot**: Shows the most influential k-mers and their SHAP values
- **Sequence Impact Visualization**: Shows the sequence with highlighted k-mers:
- Red highlights = pushing toward human origin
- Blue highlights = pushing toward non-human origin
- Arrows (↑/↓) show impact direction
- Values show impact magnitude
""")
if __name__ == "__main__":
iface.launch()