Spaces:
Running
Running
import gradio as gr | |
import torch | |
import joblib | |
import numpy as np | |
from itertools import product | |
import torch.nn as nn | |
import matplotlib.pyplot as plt | |
import matplotlib.colors as mcolors | |
import seaborn as sns | |
from PIL import Image | |
import io | |
import pandas as pd | |
from typing import Tuple, List, Dict, Any | |
from dataclasses import dataclass | |
import plotly.graph_objects as go | |
import plotly.express as px | |
from plotly.subplots import make_subplots | |
############################################################################### | |
# 1. DATA STRUCTURES & MODEL | |
############################################################################### | |
class SequenceAnalysis: | |
"""Container for sequence analysis results""" | |
header: str | |
sequence: str | |
length: int | |
gc_content: float | |
classification: str | |
human_prob: float | |
nonhuman_prob: float | |
shap_values: np.ndarray | |
shap_means: np.ndarray | |
extreme_regions: Dict[str, Dict[str, Any]] | |
class VirusClassifier(nn.Module): | |
def __init__(self, input_shape: int): | |
super(VirusClassifier, self).__init__() | |
self.network = nn.Sequential( | |
nn.Linear(input_shape, 64), | |
nn.GELU(), | |
nn.BatchNorm1d(64), | |
nn.Dropout(0.3), | |
nn.Linear(64, 32), | |
nn.GELU(), | |
nn.BatchNorm1d(32), | |
nn.Dropout(0.3), | |
nn.Linear(32, 32), | |
nn.GELU(), | |
nn.Linear(32, 2) | |
) | |
def forward(self, x): | |
return self.network(x) | |
############################################################################### | |
# 2. SEQUENCE PROCESSING | |
############################################################################### | |
def parse_fasta(text: str) -> List[Tuple[str, str]]: | |
"""Parse FASTA formatted text with improved robustness""" | |
sequences = [] | |
current_header = None | |
current_sequence = [] | |
for line in text.strip().split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('>'): | |
if current_header: | |
sequences.append((current_header, ''.join(current_sequence))) | |
current_header = line[1:] | |
current_sequence = [] | |
else: | |
# Filter out non-ACGT characters and convert to uppercase | |
filtered_line = ''.join(c for c in line.upper() if c in 'ACGT') | |
current_sequence.append(filtered_line) | |
if current_header: | |
sequences.append((current_header, ''.join(current_sequence))) | |
return sequences | |
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray: | |
"""Convert sequence to k-mer frequency vector with optimizations""" | |
kmers = [''.join(p) for p in product("ACGT", repeat=k)] | |
kmer_dict = {km: i for i, km in enumerate(kmers)} | |
vec = np.zeros(len(kmers), dtype=np.float32) | |
# Use sliding window for efficiency | |
for i in range(len(sequence) - k + 1): | |
kmer = sequence[i:i+k] | |
if kmer in kmer_dict: # Handle non-ACGT kmers | |
vec[kmer_dict[kmer]] += 1 | |
# Normalize | |
total_kmers = len(sequence) - k + 1 | |
if total_kmers > 0: | |
vec = vec / total_kmers | |
return vec | |
def compute_gc_content(sequence: str) -> float: | |
"""Compute GC content percentage""" | |
if not sequence: | |
return 0.0 | |
gc_count = sum(1 for base in sequence if base in 'GC') | |
return (gc_count / len(sequence)) * 100.0 | |
############################################################################### | |
# 3. SHAP & ANALYSIS | |
############################################################################### | |
def calculate_shap_values(model: nn.Module, x_tensor: torch.Tensor) -> Tuple[np.ndarray, float]: | |
"""Calculate SHAP values using ablation with improved efficiency""" | |
model.eval() | |
with torch.no_grad(): | |
baseline_output = model(x_tensor) | |
baseline_probs = torch.softmax(baseline_output, dim=1) | |
baseline_prob = baseline_probs[0, 1].item() | |
shap_values = [] | |
x_zeroed = x_tensor.clone() | |
# Vectorized computation where possible | |
for i in range(x_tensor.shape[1]): | |
x_zeroed[0, i] = 0.0 | |
output = model(x_zeroed) | |
probs = torch.softmax(output, dim=1) | |
impact = baseline_prob - probs[0, 1].item() | |
shap_values.append(impact) | |
x_zeroed[0, i] = x_tensor[0, i] | |
return np.array(shap_values), baseline_prob | |
def compute_positionwise_scores(sequence: str, shap_values: np.ndarray, k: int = 4) -> np.ndarray: | |
"""Compute per-base SHAP scores with optimized memory usage""" | |
kmers = [''.join(p) for p in product("ACGT", repeat=k)] | |
kmer_dict = {km: i for i, km in enumerate(kmers)} | |
seq_len = len(sequence) | |
shap_sums = np.zeros(seq_len, dtype=np.float32) | |
coverage = np.zeros(seq_len, dtype=np.float32) | |
# Vectorized operations where possible | |
for i in range(seq_len - k + 1): | |
kmer = sequence[i:i+k] | |
if kmer in kmer_dict: | |
idx = kmer_dict[kmer] | |
shap_sums[i:i+k] += shap_values[idx] | |
coverage[i:i+k] += 1 | |
with np.errstate(divide='ignore', invalid='ignore'): | |
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0) | |
return shap_means | |
def find_extreme_regions(shap_means: np.ndarray, window_size: int = 500) -> Dict[str, Dict[str, Any]]: | |
"""Find regions with extreme SHAP values using efficient sliding window""" | |
if len(shap_means) < window_size: | |
window_size = len(shap_means) | |
# Compute cumulative sum for efficient sliding window | |
cumsum = np.cumsum(np.pad(shap_means, (0, 1))) | |
# Sliding window calculation | |
window_avgs = (cumsum[window_size:] - cumsum[:-window_size]) / window_size | |
max_idx = np.argmax(window_avgs) | |
min_idx = np.argmin(window_avgs) | |
return { | |
"human": { | |
"start": max_idx, | |
"end": max_idx + window_size, | |
"avg_shap": float(window_avgs[max_idx]) | |
}, | |
"nonhuman": { | |
"start": min_idx, | |
"end": min_idx + window_size, | |
"avg_shap": float(window_avgs[min_idx]) | |
} | |
} | |
############################################################################### | |
# 4. VISUALIZATION | |
############################################################################### | |
def create_genome_overview_plot(analysis: SequenceAnalysis) -> go.Figure: | |
"""Create an interactive genome overview using Plotly""" | |
fig = make_subplots( | |
rows=2, cols=1, | |
subplot_titles=("SHAP Values Along Genome", "GC Content"), | |
row_heights=[0.7, 0.3], | |
vertical_spacing=0.1 | |
) | |
# SHAP trace | |
fig.add_trace( | |
go.Scatter( | |
x=list(range(len(analysis.shap_means))), | |
y=analysis.shap_means, | |
name="SHAP", | |
line=dict(color='rgba(31, 119, 180, 0.8)'), | |
hovertemplate="Position: %{x}<br>SHAP: %{y:.4f}<extra></extra>" | |
), | |
row=1, col=1 | |
) | |
# Highlight extreme regions | |
for region_type, region in analysis.extreme_regions.items(): | |
color = 'rgba(255, 0, 0, 0.2)' if region_type == 'human' else 'rgba(0, 0, 255, 0.2)' | |
fig.add_vrect( | |
x0=region['start'], | |
x1=region['end'], | |
fillcolor=color, | |
opacity=0.5, | |
layer="below", | |
line_width=0, | |
row=1, col=1 | |
) | |
# Calculate rolling GC content | |
window = 100 | |
gc_content = np.array([ | |
compute_gc_content(analysis.sequence[i:i+window]) | |
for i in range(0, len(analysis.sequence) - window + 1, window) | |
]) | |
# GC content trace | |
fig.add_trace( | |
go.Scatter( | |
x=np.arange(len(gc_content)) * window, | |
y=gc_content, | |
name="GC%", | |
line=dict(color='rgba(44, 160, 44, 0.8)'), | |
hovertemplate="Position: %{x}<br>GC%: %{y:.1f}%<extra></extra>" | |
), | |
row=2, col=1 | |
) | |
# Update layout | |
fig.update_layout( | |
height=800, | |
title=dict( | |
text=f"Genome Analysis Overview<br><sub>{analysis.header}</sub>", | |
x=0.5 | |
), | |
showlegend=False, | |
plot_bgcolor='white' | |
) | |
# Update axes | |
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='lightgray') | |
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='lightgray') | |
return fig | |
def create_kmer_importance_plot(analysis: SequenceAnalysis, top_k: int = 10) -> go.Figure: | |
"""Create interactive k-mer importance plot using Plotly""" | |
# Get top k-mers by absolute SHAP value | |
kmers = [''.join(p) for p in product("ACGT", repeat=4)] | |
indices = np.argsort(np.abs(analysis.shap_values))[-top_k:] | |
# Create DataFrame for plotting | |
df = pd.DataFrame({ | |
'k-mer': [kmers[i] for i in indices], | |
'SHAP': analysis.shap_values[indices] | |
}) | |
# Create plot | |
fig = px.bar( | |
df, | |
x='SHAP', | |
y='k-mer', | |
orientation='h', | |
color='SHAP', | |
color_continuous_scale='RdBu', | |
title=f'Top {top_k} Most Influential k-mers' | |
) | |
# Update layout | |
fig.update_layout( | |
height=400, | |
plot_bgcolor='white', | |
yaxis_title='', | |
xaxis_title='SHAP Value', | |
coloraxis_showscale=False | |
) | |
return fig | |
def create_shap_distribution_plot(analysis: SequenceAnalysis) -> go.Figure: | |
"""Create SHAP distribution plot using Plotly""" | |
fig = go.Figure() | |
# Add histogram | |
fig.add_trace(go.Histogram( | |
x=analysis.shap_means, | |
nbinsx=50, | |
name='SHAP Values', | |
marker_color='rgba(31, 119, 180, 0.6)' | |
)) | |
# Add vertical line at x=0 | |
fig.add_vline( | |
x=0, | |
line_dash="dash", | |
line_color="red", | |
annotation_text="Neutral", | |
annotation_position="top" | |
) | |
# Update layout | |
fig.update_layout( | |
title='Distribution of SHAP Values', | |
xaxis_title='SHAP Value', | |
yaxis_title='Count', | |
plot_bgcolor='white', | |
height=400 | |
) | |
return fig | |
############################################################################### | |
# 5. MAIN ANALYSIS | |
############################################################################### | |
def analyze_sequence( | |
file_obj: str = None, | |
fasta_text: str = "", | |
window_size: int = 500, | |
model_path: str = 'model.pt', | |
scaler_path: str = 'scaler.pkl' | |
) -> SequenceAnalysis: | |
"""Main sequence analysis function""" | |
# Handle input | |
if fasta_text.strip(): | |
text = fasta_text.strip() | |
elif file_obj is not None: | |
with open(file_obj, 'r') as f: | |
text = f.read() | |
else: | |
raise ValueError("No input provided") | |
# Parse FASTA | |
sequences = parse_fasta(text) | |
if not sequences: | |
raise ValueError("No valid FASTA sequences found") | |
header, seq = sequences[0] | |
# Load model and scaler | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
state_dict = torch.load(model_path, map_location=device) | |
model = VirusClassifier(256).to(device) | |
model.load_state_dict(state_dict) | |
scaler = joblib.load(scaler_path) | |
# Process sequence | |
freq_vector = sequence_to_kmer_vector(seq) | |
scaled_vector = scaler.transform(freq_vector.reshape(1, -1)) | |
x_tensor = torch.FloatTensor(scaled_vector).to(device) | |
# Get SHAP values and classification | |
shap_values, prob_human = calculate_shap_values(model, x_tensor) | |
prob_nonhuman = 1.0 - prob_human | |
# Get per-base SHAP scores | |
shap_means = compute_positionwise_scores(seq, shap_values) | |
# Find extreme regions | |
extreme_regions = find_extreme_regions(shap_means, window_size) | |
# Create analysis object | |
return SequenceAnalysis( | |
header=header, | |
sequence=seq, | |
length=len(seq), | |
gc_content=compute_gc_content(seq), | |
classification="Human" if prob_human > 0.5 else "Non-human", | |
human_prob=prob_human, | |
nonhuman_prob=prob_nonhuman, | |
shap_values=shap_values, | |
shap_means=shap_means, | |
extreme_regions=extreme_regions | |
) | |
############################################################################### | |
# 6. GRADIO INTERFACE | |
############################################################################### | |
def create_interface(): | |
"""Create enhanced Gradio interface with improved layout and interactivity""" | |
def process_sequence( | |
file_obj: str, | |
fasta_text: str, | |
window_size: int, | |
top_kmers: int | |
) -> Tuple[str, List[go.Figure]]: | |
"""Process sequence and return formatted results and plots""" | |
try: | |
# Run analysis | |
analysis = analyze_sequence( | |
file_obj=file_obj, | |
fasta_text=fasta_text, | |
window_size=window_size | |
) | |
# Format results text | |
results = f""" | |
### Sequence Analysis Results | |
**Basic Information** | |
- Sequence: {analysis.header} | |
- Length: {analysis.length:,} bases | |
- GC Content: {analysis.gc_content:.1f}% | |
**Classification** | |
- Prediction: {analysis.classification} | |
- Human Probability: {analysis.human_prob:.3f} | |
- Non-human Probability: {analysis.nonhuman_prob:.3f} | |
**Extreme Regions (window size: {window_size}bp)** | |
Most Human-like Region: | |
- Position: {analysis.extreme_regions['human']['start']:,} - {analysis.extreme_regions['human']['end']:,} | |
- Average SHAP: {analysis.extreme_regions['human']['avg_shap']:.4f} | |
Most Non-human-like Region: | |
- Position: {analysis.extreme_regions['nonhuman']['start']:,} - {analysis.extreme_regions['nonhuman']['end']:,} | |
- Average SHAP: {analysis.extreme_regions['nonhuman']['avg_shap']:.4f} | |
""" | |
# Create plots | |
genome_plot = create_genome_overview_plot(analysis) | |
kmer_plot = create_kmer_importance_plot(analysis, top_kmers) | |
dist_plot = create_shap_distribution_plot(analysis) | |
return results, [genome_plot, kmer_plot, dist_plot], analysis | |
except Exception as e: | |
return f"Error: {str(e)}", [], None | |
# Create theme and styling | |
theme = gr.themes.Soft( | |
primary_hue="blue", | |
secondary_hue="gray", | |
).set( | |
body_text_color="gray-dark", | |
background_fill_primary="*gray-50", | |
block_shadow="*shadow-sm", | |
block_background_fill="white", | |
) | |
# Build interface | |
with gr.Blocks(theme=theme, css=""" | |
.container { margin: 0 auto; max-width: 1200px; padding: 20px; } | |
.results { margin-top: 20px; } | |
.plot-container { margin-top: 10px; } | |
""") as interface: | |
gr.Markdown(""" | |
# 𧬠Enhanced Virus Host Classifier | |
This tool analyzes viral sequences to predict their host (human vs. non-human) and provides detailed visualizations | |
of the features influencing this classification. Upload or paste a FASTA sequence to begin. | |
*Using advanced SHAP analysis and interactive visualizations for interpretable results.* | |
""") | |
# Input section | |
with gr.Tab("Sequence Analysis"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
file_input = gr.File( | |
label="Upload FASTA File", | |
file_types=[".fasta", ".fa", ".txt"], | |
type="filepath" | |
) | |
text_input = gr.Textbox( | |
label="Or Paste FASTA Sequence", | |
placeholder=">sequence_name\nACGTACGT...", | |
lines=5 | |
) | |
with gr.Row(): | |
window_size = gr.Slider( | |
minimum=100, | |
maximum=5000, | |
value=500, | |
step=100, | |
label="Window Size for Region Analysis" | |
) | |
top_kmers = gr.Slider( | |
minimum=5, | |
maximum=30, | |
value=10, | |
step=1, | |
label="Number of Top k-mers to Display" | |
) | |
analyze_btn = gr.Button( | |
"π Analyze Sequence", | |
variant="primary" | |
) | |
# Results section | |
with gr.Column(scale=2): | |
results_text = gr.Markdown( | |
label="Analysis Results" | |
) | |
# Plots | |
genome_plot = gr.Plot( | |
label="Genome Overview" | |
) | |
with gr.Row(): | |
kmer_plot = gr.Plot( | |
label="k-mer Importance" | |
) | |
dist_plot = gr.Plot( | |
label="SHAP Distribution" | |
) | |
# Help tab | |
with gr.Tab("Help & Information"): | |
gr.Markdown(""" | |
### π How to Use This Tool | |
1. **Input Your Sequence** | |
- Upload a FASTA file or paste your sequence in FASTA format | |
- The sequence should contain only ACGT bases (non-standard bases will be filtered) | |
2. **Adjust Parameters** | |
- Window Size: Controls the length of regions analyzed for extreme patterns | |
- Top k-mers: Number of most influential sequence patterns to display | |
3. **Interpret Results** | |
- Classification: Predicted host (human vs. non-human) | |
- Genome Overview: Interactive plot showing SHAP values and GC content | |
- k-mer Importance: Most influential sequence patterns | |
- SHAP Distribution: Overall distribution of feature importance | |
### π¨ Visualization Guide | |
- **SHAP Values**: | |
- Positive (red) = pushing toward human classification | |
- Negative (blue) = pushing toward non-human classification | |
- Zero (white) = neutral impact | |
- **Extreme Regions**: | |
- Highlighted in the genome overview plot | |
- Red regions = most human-like | |
- Blue regions = most non-human-like | |
### π¬ Technical Details | |
- The classifier uses k-mer frequencies (k=4) as features | |
- SHAP values are calculated using an ablation-based approach | |
- GC content is calculated using a sliding window | |
""") | |
# Connect components | |
sequence_state = gr.State() | |
analyze_btn.click( | |
process_sequence, | |
inputs=[ | |
file_input, | |
text_input, | |
window_size, | |
top_kmers | |
], | |
outputs=[ | |
results_text, | |
[genome_plot, kmer_plot, dist_plot], | |
sequence_state | |
] | |
) | |
return interface | |
############################################################################### | |
# 7. MAIN ENTRY POINT | |
############################################################################### | |
if __name__ == "__main__": | |
iface = create_interface() | |
iface.launch( | |
share=True, | |
server_name="0.0.0.0", | |
show_error=True | |
) | |
# |