HostClassifier / app.py
hiyata's picture
Update app.py
6be7ede verified
raw
history blame
20.2 kB
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import seaborn as sns
from PIL import Image
import io
import pandas as pd
from typing import Tuple, List, Dict, Any
from dataclasses import dataclass
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
###############################################################################
# 1. DATA STRUCTURES & MODEL
###############################################################################
@dataclass
class SequenceAnalysis:
"""Container for sequence analysis results"""
header: str
sequence: str
length: int
gc_content: float
classification: str
human_prob: float
nonhuman_prob: float
shap_values: np.ndarray
shap_means: np.ndarray
extreme_regions: Dict[str, Dict[str, Any]]
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
###############################################################################
# 2. SEQUENCE PROCESSING
###############################################################################
def parse_fasta(text: str) -> List[Tuple[str, str]]:
"""Parse FASTA formatted text with improved robustness"""
sequences = []
current_header = None
current_sequence = []
for line in text.strip().split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
# Filter out non-ACGT characters and convert to uppercase
filtered_line = ''.join(c for c in line.upper() if c in 'ACGT')
current_sequence.append(filtered_line)
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert sequence to k-mer frequency vector with optimizations"""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
# Use sliding window for efficiency
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict: # Handle non-ACGT kmers
vec[kmer_dict[kmer]] += 1
# Normalize
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
def compute_gc_content(sequence: str) -> float:
"""Compute GC content percentage"""
if not sequence:
return 0.0
gc_count = sum(1 for base in sequence if base in 'GC')
return (gc_count / len(sequence)) * 100.0
###############################################################################
# 3. SHAP & ANALYSIS
###############################################################################
def calculate_shap_values(model: nn.Module, x_tensor: torch.Tensor) -> Tuple[np.ndarray, float]:
"""Calculate SHAP values using ablation with improved efficiency"""
model.eval()
with torch.no_grad():
baseline_output = model(x_tensor)
baseline_probs = torch.softmax(baseline_output, dim=1)
baseline_prob = baseline_probs[0, 1].item()
shap_values = []
x_zeroed = x_tensor.clone()
# Vectorized computation where possible
for i in range(x_tensor.shape[1]):
x_zeroed[0, i] = 0.0
output = model(x_zeroed)
probs = torch.softmax(output, dim=1)
impact = baseline_prob - probs[0, 1].item()
shap_values.append(impact)
x_zeroed[0, i] = x_tensor[0, i]
return np.array(shap_values), baseline_prob
def compute_positionwise_scores(sequence: str, shap_values: np.ndarray, k: int = 4) -> np.ndarray:
"""Compute per-base SHAP scores with optimized memory usage"""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
seq_len = len(sequence)
shap_sums = np.zeros(seq_len, dtype=np.float32)
coverage = np.zeros(seq_len, dtype=np.float32)
# Vectorized operations where possible
for i in range(seq_len - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
idx = kmer_dict[kmer]
shap_sums[i:i+k] += shap_values[idx]
coverage[i:i+k] += 1
with np.errstate(divide='ignore', invalid='ignore'):
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
return shap_means
def find_extreme_regions(shap_means: np.ndarray, window_size: int = 500) -> Dict[str, Dict[str, Any]]:
"""Find regions with extreme SHAP values using efficient sliding window"""
if len(shap_means) < window_size:
window_size = len(shap_means)
# Compute cumulative sum for efficient sliding window
cumsum = np.cumsum(np.pad(shap_means, (0, 1)))
# Sliding window calculation
window_avgs = (cumsum[window_size:] - cumsum[:-window_size]) / window_size
max_idx = np.argmax(window_avgs)
min_idx = np.argmin(window_avgs)
return {
"human": {
"start": max_idx,
"end": max_idx + window_size,
"avg_shap": float(window_avgs[max_idx])
},
"nonhuman": {
"start": min_idx,
"end": min_idx + window_size,
"avg_shap": float(window_avgs[min_idx])
}
}
###############################################################################
# 4. VISUALIZATION
###############################################################################
def create_genome_overview_plot(analysis: SequenceAnalysis) -> go.Figure:
"""Create an interactive genome overview using Plotly"""
fig = make_subplots(
rows=2, cols=1,
subplot_titles=("SHAP Values Along Genome", "GC Content"),
row_heights=[0.7, 0.3],
vertical_spacing=0.1
)
# SHAP trace
fig.add_trace(
go.Scatter(
x=list(range(len(analysis.shap_means))),
y=analysis.shap_means,
name="SHAP",
line=dict(color='rgba(31, 119, 180, 0.8)'),
hovertemplate="Position: %{x}<br>SHAP: %{y:.4f}<extra></extra>"
),
row=1, col=1
)
# Highlight extreme regions
for region_type, region in analysis.extreme_regions.items():
color = 'rgba(255, 0, 0, 0.2)' if region_type == 'human' else 'rgba(0, 0, 255, 0.2)'
fig.add_vrect(
x0=region['start'],
x1=region['end'],
fillcolor=color,
opacity=0.5,
layer="below",
line_width=0,
row=1, col=1
)
# Calculate rolling GC content
window = 100
gc_content = np.array([
compute_gc_content(analysis.sequence[i:i+window])
for i in range(0, len(analysis.sequence) - window + 1, window)
])
# GC content trace
fig.add_trace(
go.Scatter(
x=np.arange(len(gc_content)) * window,
y=gc_content,
name="GC%",
line=dict(color='rgba(44, 160, 44, 0.8)'),
hovertemplate="Position: %{x}<br>GC%: %{y:.1f}%<extra></extra>"
),
row=2, col=1
)
# Update layout
fig.update_layout(
height=800,
title=dict(
text=f"Genome Analysis Overview<br><sub>{analysis.header}</sub>",
x=0.5
),
showlegend=False,
plot_bgcolor='white'
)
# Update axes
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
return fig
def create_kmer_importance_plot(analysis: SequenceAnalysis, top_k: int = 10) -> go.Figure:
"""Create interactive k-mer importance plot using Plotly"""
# Get top k-mers by absolute SHAP value
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
indices = np.argsort(np.abs(analysis.shap_values))[-top_k:]
# Create DataFrame for plotting
df = pd.DataFrame({
'k-mer': [kmers[i] for i in indices],
'SHAP': analysis.shap_values[indices]
})
# Create plot
fig = px.bar(
df,
x='SHAP',
y='k-mer',
orientation='h',
color='SHAP',
color_continuous_scale='RdBu',
title=f'Top {top_k} Most Influential k-mers'
)
# Update layout
fig.update_layout(
height=400,
plot_bgcolor='white',
yaxis_title='',
xaxis_title='SHAP Value',
coloraxis_showscale=False
)
return fig
def create_shap_distribution_plot(analysis: SequenceAnalysis) -> go.Figure:
"""Create SHAP distribution plot using Plotly"""
fig = go.Figure()
# Add histogram
fig.add_trace(go.Histogram(
x=analysis.shap_means,
nbinsx=50,
name='SHAP Values',
marker_color='rgba(31, 119, 180, 0.6)'
))
# Add vertical line at x=0
fig.add_vline(
x=0,
line_dash="dash",
line_color="red",
annotation_text="Neutral",
annotation_position="top"
)
# Update layout
fig.update_layout(
title='Distribution of SHAP Values',
xaxis_title='SHAP Value',
yaxis_title='Count',
plot_bgcolor='white',
height=400
)
return fig
###############################################################################
# 5. MAIN ANALYSIS
###############################################################################
def analyze_sequence(
file_obj: str = None,
fasta_text: str = "",
window_size: int = 500,
model_path: str = 'model.pt',
scaler_path: str = 'scaler.pkl'
) -> SequenceAnalysis:
"""Main sequence analysis function"""
# Handle input
if fasta_text.strip():
text = fasta_text.strip()
elif file_obj is not None:
with open(file_obj, 'r') as f:
text = f.read()
else:
raise ValueError("No input provided")
# Parse FASTA
sequences = parse_fasta(text)
if not sequences:
raise ValueError("No valid FASTA sequences found")
header, seq = sequences[0]
# Load model and scaler
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
state_dict = torch.load(model_path, map_location=device)
model = VirusClassifier(256).to(device)
model.load_state_dict(state_dict)
scaler = joblib.load(scaler_path)
# Process sequence
freq_vector = sequence_to_kmer_vector(seq)
scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
x_tensor = torch.FloatTensor(scaled_vector).to(device)
# Get SHAP values and classification
shap_values, prob_human = calculate_shap_values(model, x_tensor)
prob_nonhuman = 1.0 - prob_human
# Get per-base SHAP scores
shap_means = compute_positionwise_scores(seq, shap_values)
# Find extreme regions
extreme_regions = find_extreme_regions(shap_means, window_size)
# Create analysis object
return SequenceAnalysis(
header=header,
sequence=seq,
length=len(seq),
gc_content=compute_gc_content(seq),
classification="Human" if prob_human > 0.5 else "Non-human",
human_prob=prob_human,
nonhuman_prob=prob_nonhuman,
shap_values=shap_values,
shap_means=shap_means,
extreme_regions=extreme_regions
)
###############################################################################
# 6. GRADIO INTERFACE
###############################################################################
def create_interface():
"""Create enhanced Gradio interface with improved layout and interactivity"""
def process_sequence(
file_obj: str,
fasta_text: str,
window_size: int,
top_kmers: int
) -> Tuple[str, List[go.Figure]]:
"""Process sequence and return formatted results and plots"""
try:
# Run analysis
analysis = analyze_sequence(
file_obj=file_obj,
fasta_text=fasta_text,
window_size=window_size
)
# Format results text
results = f"""
### Sequence Analysis Results
**Basic Information**
- Sequence: {analysis.header}
- Length: {analysis.length:,} bases
- GC Content: {analysis.gc_content:.1f}%
**Classification**
- Prediction: {analysis.classification}
- Human Probability: {analysis.human_prob:.3f}
- Non-human Probability: {analysis.nonhuman_prob:.3f}
**Extreme Regions (window size: {window_size}bp)**
Most Human-like Region:
- Position: {analysis.extreme_regions['human']['start']:,} - {analysis.extreme_regions['human']['end']:,}
- Average SHAP: {analysis.extreme_regions['human']['avg_shap']:.4f}
Most Non-human-like Region:
- Position: {analysis.extreme_regions['nonhuman']['start']:,} - {analysis.extreme_regions['nonhuman']['end']:,}
- Average SHAP: {analysis.extreme_regions['nonhuman']['avg_shap']:.4f}
"""
# Create plots
genome_plot = create_genome_overview_plot(analysis)
kmer_plot = create_kmer_importance_plot(analysis, top_kmers)
dist_plot = create_shap_distribution_plot(analysis)
return results, [genome_plot, kmer_plot, dist_plot], analysis
except Exception as e:
return f"Error: {str(e)}", [], None
# Create theme and styling
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
).set(
body_text_color="gray-dark",
background_fill_primary="*gray-50",
block_shadow="*shadow-sm",
block_background_fill="white",
)
# Build interface
with gr.Blocks(theme=theme, css="""
.container { margin: 0 auto; max-width: 1200px; padding: 20px; }
.results { margin-top: 20px; }
.plot-container { margin-top: 10px; }
""") as interface:
gr.Markdown("""
# 🧬 Enhanced Virus Host Classifier
This tool analyzes viral sequences to predict their host (human vs. non-human) and provides detailed visualizations
of the features influencing this classification. Upload or paste a FASTA sequence to begin.
*Using advanced SHAP analysis and interactive visualizations for interpretable results.*
""")
# Input section
with gr.Tab("Sequence Analysis"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload FASTA File",
file_types=[".fasta", ".fa", ".txt"],
type="filepath"
)
text_input = gr.Textbox(
label="Or Paste FASTA Sequence",
placeholder=">sequence_name\nACGTACGT...",
lines=5
)
with gr.Row():
window_size = gr.Slider(
minimum=100,
maximum=5000,
value=500,
step=100,
label="Window Size for Region Analysis"
)
top_kmers = gr.Slider(
minimum=5,
maximum=30,
value=10,
step=1,
label="Number of Top k-mers to Display"
)
analyze_btn = gr.Button(
"πŸ” Analyze Sequence",
variant="primary"
)
# Results section
with gr.Column(scale=2):
results_text = gr.Markdown(
label="Analysis Results"
)
# Plots
genome_plot = gr.Plot(
label="Genome Overview"
)
with gr.Row():
kmer_plot = gr.Plot(
label="k-mer Importance"
)
dist_plot = gr.Plot(
label="SHAP Distribution"
)
# Help tab
with gr.Tab("Help & Information"):
gr.Markdown("""
### πŸ“– How to Use This Tool
1. **Input Your Sequence**
- Upload a FASTA file or paste your sequence in FASTA format
- The sequence should contain only ACGT bases (non-standard bases will be filtered)
2. **Adjust Parameters**
- Window Size: Controls the length of regions analyzed for extreme patterns
- Top k-mers: Number of most influential sequence patterns to display
3. **Interpret Results**
- Classification: Predicted host (human vs. non-human)
- Genome Overview: Interactive plot showing SHAP values and GC content
- k-mer Importance: Most influential sequence patterns
- SHAP Distribution: Overall distribution of feature importance
### 🎨 Visualization Guide
- **SHAP Values**:
- Positive (red) = pushing toward human classification
- Negative (blue) = pushing toward non-human classification
- Zero (white) = neutral impact
- **Extreme Regions**:
- Highlighted in the genome overview plot
- Red regions = most human-like
- Blue regions = most non-human-like
### πŸ”¬ Technical Details
- The classifier uses k-mer frequencies (k=4) as features
- SHAP values are calculated using an ablation-based approach
- GC content is calculated using a sliding window
""")
# Connect components
sequence_state = gr.State()
analyze_btn.click(
process_sequence,
inputs=[
file_input,
text_input,
window_size,
top_kmers
],
outputs=[
results_text,
[genome_plot, kmer_plot, dist_plot],
sequence_state
]
)
return interface
###############################################################################
# 7. MAIN ENTRY POINT
###############################################################################
if __name__ == "__main__":
iface = create_interface()
iface.launch(
share=True,
server_name="0.0.0.0",
show_error=True
)
#