File size: 20,226 Bytes
5263bd3
 
 
 
f1d4be6
5263bd3
4a7c026
910c6c2
6be7ede
40fe6da
6be7ede
 
 
 
 
 
 
a6886ca
962ae70
6be7ede
962ae70
 
6be7ede
 
 
 
 
 
 
 
 
 
 
 
 
 
5263bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6be7ede
5263bd3
 
b5edb58
962ae70
6be7ede
962ae70
 
6be7ede
 
870813f
 
 
 
f1d4be6
870813f
 
 
 
 
 
 
 
 
6be7ede
 
 
 
870813f
 
 
 
a6886ca
6be7ede
a6886ca
 
 
 
6be7ede
a6886ca
 
6be7ede
a6886ca
6be7ede
 
a6886ca
 
 
6be7ede
a6886ca
 
6be7ede
 
 
 
 
 
 
962ae70
6be7ede
962ae70
 
6be7ede
 
f1d4be6
 
ef80028
7e92f7c
6be7ede
ef80028
 
7e92f7c
6be7ede
 
ef80028
962ae70
7e92f7c
 
6be7ede
7e92f7c
6be7ede
 
ef80028
a6886ca
6be7ede
 
962ae70
 
 
 
 
 
 
6be7ede
962ae70
 
 
6be7ede
 
 
 
962ae70
 
6be7ede
962ae70
 
6be7ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552aec4
 
6be7ede
d76e76a
 
6be7ede
 
 
 
 
 
 
910c6c2
552aec4
6be7ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a00943
6be7ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d0235b
962ae70
 
6be7ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d0235b
 
6be7ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1d4be6
 
962ae70
6be7ede
962ae70
 
6be7ede
 
 
 
 
 
 
 
ef80028
f1d4be6
 
ef80028
6be7ede
 
ef80028
6be7ede
 
f1d4be6
 
ef80028
6be7ede
ef80028
f1d4be6
6be7ede
962ae70
ef80028
6be7ede
 
 
 
 
 
 
ef80028
 
 
6be7ede
 
7e92f7c
56468ea
ef80028
6be7ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56468ea
 
 
6be7ede
56468ea
 
6be7ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d0235b
ef80028
6be7ede
 
 
 
 
 
56468ea
6be7ede
 
 
 
 
 
56468ea
 
6be7ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d0235b
6be7ede
 
 
 
 
 
 
 
 
 
 
 
 
56468ea
6be7ede
 
 
 
 
 
0d2d632
723da6d
6be7ede
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import seaborn as sns
from PIL import Image
import io
import pandas as pd
from typing import Tuple, List, Dict, Any
from dataclasses import dataclass
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots

###############################################################################
# 1. DATA STRUCTURES & MODEL
###############################################################################

@dataclass
class SequenceAnalysis:
    """Container for sequence analysis results"""
    header: str
    sequence: str
    length: int
    gc_content: float
    classification: str
    human_prob: float
    nonhuman_prob: float
    shap_values: np.ndarray
    shap_means: np.ndarray
    extreme_regions: Dict[str, Dict[str, Any]]

class VirusClassifier(nn.Module):
    def __init__(self, input_shape: int):
        super(VirusClassifier, self).__init__()
        self.network = nn.Sequential(
            nn.Linear(input_shape, 64),
            nn.GELU(),
            nn.BatchNorm1d(64),
            nn.Dropout(0.3),
            nn.Linear(64, 32),
            nn.GELU(),
            nn.BatchNorm1d(32),
            nn.Dropout(0.3),
            nn.Linear(32, 32),
            nn.GELU(),
            nn.Linear(32, 2)
        )
        
    def forward(self, x):
        return self.network(x)

###############################################################################
# 2. SEQUENCE PROCESSING
###############################################################################

def parse_fasta(text: str) -> List[Tuple[str, str]]:
    """Parse FASTA formatted text with improved robustness"""
    sequences = []
    current_header = None
    current_sequence = []
    
    for line in text.strip().split('\n'):
        line = line.strip()
        if not line:
            continue
        if line.startswith('>'):
            if current_header:
                sequences.append((current_header, ''.join(current_sequence)))
            current_header = line[1:]
            current_sequence = []
        else:
            # Filter out non-ACGT characters and convert to uppercase
            filtered_line = ''.join(c for c in line.upper() if c in 'ACGT')
            current_sequence.append(filtered_line)
            
    if current_header:
        sequences.append((current_header, ''.join(current_sequence)))
    return sequences

def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
    """Convert sequence to k-mer frequency vector with optimizations"""
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    vec = np.zeros(len(kmers), dtype=np.float32)
    
    # Use sliding window for efficiency
    for i in range(len(sequence) - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:  # Handle non-ACGT kmers
            vec[kmer_dict[kmer]] += 1
    
    # Normalize
    total_kmers = len(sequence) - k + 1
    if total_kmers > 0:
        vec = vec / total_kmers
    
    return vec

def compute_gc_content(sequence: str) -> float:
    """Compute GC content percentage"""
    if not sequence:
        return 0.0
    gc_count = sum(1 for base in sequence if base in 'GC')
    return (gc_count / len(sequence)) * 100.0

###############################################################################
# 3. SHAP & ANALYSIS
###############################################################################

def calculate_shap_values(model: nn.Module, x_tensor: torch.Tensor) -> Tuple[np.ndarray, float]:
    """Calculate SHAP values using ablation with improved efficiency"""
    model.eval()
    with torch.no_grad():
        baseline_output = model(x_tensor)
        baseline_probs = torch.softmax(baseline_output, dim=1)
        baseline_prob = baseline_probs[0, 1].item()
        
        shap_values = []
        x_zeroed = x_tensor.clone()
        
        # Vectorized computation where possible
        for i in range(x_tensor.shape[1]):
            x_zeroed[0, i] = 0.0
            output = model(x_zeroed)
            probs = torch.softmax(output, dim=1)
            impact = baseline_prob - probs[0, 1].item()
            shap_values.append(impact)
            x_zeroed[0, i] = x_tensor[0, i]
            
    return np.array(shap_values), baseline_prob

def compute_positionwise_scores(sequence: str, shap_values: np.ndarray, k: int = 4) -> np.ndarray:
    """Compute per-base SHAP scores with optimized memory usage"""
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    
    seq_len = len(sequence)
    shap_sums = np.zeros(seq_len, dtype=np.float32)
    coverage = np.zeros(seq_len, dtype=np.float32)
    
    # Vectorized operations where possible
    for i in range(seq_len - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            idx = kmer_dict[kmer]
            shap_sums[i:i+k] += shap_values[idx]
            coverage[i:i+k] += 1
    
    with np.errstate(divide='ignore', invalid='ignore'):
        shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
    
    return shap_means

def find_extreme_regions(shap_means: np.ndarray, window_size: int = 500) -> Dict[str, Dict[str, Any]]:
    """Find regions with extreme SHAP values using efficient sliding window"""
    if len(shap_means) < window_size:
        window_size = len(shap_means)
    
    # Compute cumulative sum for efficient sliding window
    cumsum = np.cumsum(np.pad(shap_means, (0, 1)))
    
    # Sliding window calculation
    window_avgs = (cumsum[window_size:] - cumsum[:-window_size]) / window_size
    
    max_idx = np.argmax(window_avgs)
    min_idx = np.argmin(window_avgs)
    
    return {
        "human": {
            "start": max_idx,
            "end": max_idx + window_size,
            "avg_shap": float(window_avgs[max_idx])
        },
        "nonhuman": {
            "start": min_idx,
            "end": min_idx + window_size,
            "avg_shap": float(window_avgs[min_idx])
        }
    }

###############################################################################
# 4. VISUALIZATION
###############################################################################

def create_genome_overview_plot(analysis: SequenceAnalysis) -> go.Figure:
    """Create an interactive genome overview using Plotly"""
    fig = make_subplots(
        rows=2, cols=1,
        subplot_titles=("SHAP Values Along Genome", "GC Content"),
        row_heights=[0.7, 0.3],
        vertical_spacing=0.1
    )
    
    # SHAP trace
    fig.add_trace(
        go.Scatter(
            x=list(range(len(analysis.shap_means))),
            y=analysis.shap_means,
            name="SHAP",
            line=dict(color='rgba(31, 119, 180, 0.8)'),
            hovertemplate="Position: %{x}<br>SHAP: %{y:.4f}<extra></extra>"
        ),
        row=1, col=1
    )
    
    # Highlight extreme regions
    for region_type, region in analysis.extreme_regions.items():
        color = 'rgba(255, 0, 0, 0.2)' if region_type == 'human' else 'rgba(0, 0, 255, 0.2)'
        fig.add_vrect(
            x0=region['start'],
            x1=region['end'],
            fillcolor=color,
            opacity=0.5,
            layer="below",
            line_width=0,
            row=1, col=1
        )
    
    # Calculate rolling GC content
    window = 100
    gc_content = np.array([
        compute_gc_content(analysis.sequence[i:i+window])
        for i in range(0, len(analysis.sequence) - window + 1, window)
    ])
    
    # GC content trace
    fig.add_trace(
        go.Scatter(
            x=np.arange(len(gc_content)) * window,
            y=gc_content,
            name="GC%",
            line=dict(color='rgba(44, 160, 44, 0.8)'),
            hovertemplate="Position: %{x}<br>GC%: %{y:.1f}%<extra></extra>"
        ),
        row=2, col=1
    )
    
    # Update layout
    fig.update_layout(
        height=800,
        title=dict(
            text=f"Genome Analysis Overview<br><sub>{analysis.header}</sub>",
            x=0.5
        ),
        showlegend=False,
        plot_bgcolor='white'
    )
    
    # Update axes
    fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
    fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
    
    return fig

def create_kmer_importance_plot(analysis: SequenceAnalysis, top_k: int = 10) -> go.Figure:
    """Create interactive k-mer importance plot using Plotly"""
    # Get top k-mers by absolute SHAP value
    kmers = [''.join(p) for p in product("ACGT", repeat=4)]
    indices = np.argsort(np.abs(analysis.shap_values))[-top_k:]
    
    # Create DataFrame for plotting
    df = pd.DataFrame({
        'k-mer': [kmers[i] for i in indices],
        'SHAP': analysis.shap_values[indices]
    })
    
    # Create plot
    fig = px.bar(
        df,
        x='SHAP',
        y='k-mer',
        orientation='h',
        color='SHAP',
        color_continuous_scale='RdBu',
        title=f'Top {top_k} Most Influential k-mers'
    )
    
    # Update layout
    fig.update_layout(
        height=400,
        plot_bgcolor='white',
        yaxis_title='',
        xaxis_title='SHAP Value',
        coloraxis_showscale=False
    )
    
    return fig

def create_shap_distribution_plot(analysis: SequenceAnalysis) -> go.Figure:
    """Create SHAP distribution plot using Plotly"""
    fig = go.Figure()
    
    # Add histogram
    fig.add_trace(go.Histogram(
        x=analysis.shap_means,
        nbinsx=50,
        name='SHAP Values',
        marker_color='rgba(31, 119, 180, 0.6)'
    ))
    
    # Add vertical line at x=0
    fig.add_vline(
        x=0,
        line_dash="dash",
        line_color="red",
        annotation_text="Neutral",
        annotation_position="top"
    )
    
    # Update layout
    fig.update_layout(
        title='Distribution of SHAP Values',
        xaxis_title='SHAP Value',
        yaxis_title='Count',
        plot_bgcolor='white',
        height=400
    )
    
    return fig

###############################################################################
# 5. MAIN ANALYSIS
###############################################################################

def analyze_sequence(
    file_obj: str = None,
    fasta_text: str = "",
    window_size: int = 500,
    model_path: str = 'model.pt',
    scaler_path: str = 'scaler.pkl'
) -> SequenceAnalysis:
    """Main sequence analysis function"""
    # Handle input
    if fasta_text.strip():
        text = fasta_text.strip()
    elif file_obj is not None:
        with open(file_obj, 'r') as f:
            text = f.read()
    else:
        raise ValueError("No input provided")
    
    # Parse FASTA
    sequences = parse_fasta(text)
    if not sequences:
        raise ValueError("No valid FASTA sequences found")
    
    header, seq = sequences[0]
    
    # Load model and scaler
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    state_dict = torch.load(model_path, map_location=device)
    model = VirusClassifier(256).to(device)
    model.load_state_dict(state_dict)
    
    scaler = joblib.load(scaler_path)
    
    # Process sequence
    freq_vector = sequence_to_kmer_vector(seq)
    scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
    x_tensor = torch.FloatTensor(scaled_vector).to(device)
    
    # Get SHAP values and classification
    shap_values, prob_human = calculate_shap_values(model, x_tensor)
    prob_nonhuman = 1.0 - prob_human
    
    # Get per-base SHAP scores
    shap_means = compute_positionwise_scores(seq, shap_values)
    
    # Find extreme regions
    extreme_regions = find_extreme_regions(shap_means, window_size)
    
    # Create analysis object
    return SequenceAnalysis(
        header=header,
        sequence=seq,
        length=len(seq),
        gc_content=compute_gc_content(seq),
        classification="Human" if prob_human > 0.5 else "Non-human",
        human_prob=prob_human,
        nonhuman_prob=prob_nonhuman,
        shap_values=shap_values,
        shap_means=shap_means,
        extreme_regions=extreme_regions
    )

###############################################################################
# 6. GRADIO INTERFACE
###############################################################################

def create_interface():
    """Create enhanced Gradio interface with improved layout and interactivity"""
    
    def process_sequence(
        file_obj: str,
        fasta_text: str,
        window_size: int,
        top_kmers: int
    ) -> Tuple[str, List[go.Figure]]:
        """Process sequence and return formatted results and plots"""
        try:
            # Run analysis
            analysis = analyze_sequence(
                file_obj=file_obj,
                fasta_text=fasta_text,
                window_size=window_size
            )
            
            # Format results text
            results = f"""
            ### Sequence Analysis Results
            
            **Basic Information**
            - Sequence: {analysis.header}
            - Length: {analysis.length:,} bases
            - GC Content: {analysis.gc_content:.1f}%
            
            **Classification**
            - Prediction: {analysis.classification}
            - Human Probability: {analysis.human_prob:.3f}
            - Non-human Probability: {analysis.nonhuman_prob:.3f}
            
            **Extreme Regions (window size: {window_size}bp)**
            Most Human-like Region:
            - Position: {analysis.extreme_regions['human']['start']:,} - {analysis.extreme_regions['human']['end']:,}
            - Average SHAP: {analysis.extreme_regions['human']['avg_shap']:.4f}
            
            Most Non-human-like Region:
            - Position: {analysis.extreme_regions['nonhuman']['start']:,} - {analysis.extreme_regions['nonhuman']['end']:,}
            - Average SHAP: {analysis.extreme_regions['nonhuman']['avg_shap']:.4f}
            """
            
            # Create plots
            genome_plot = create_genome_overview_plot(analysis)
            kmer_plot = create_kmer_importance_plot(analysis, top_kmers)
            dist_plot = create_shap_distribution_plot(analysis)
            
            return results, [genome_plot, kmer_plot, dist_plot], analysis
            
        except Exception as e:
            return f"Error: {str(e)}", [], None
    
    # Create theme and styling
    theme = gr.themes.Soft(
        primary_hue="blue",
        secondary_hue="gray",
    ).set(
        body_text_color="gray-dark",
        background_fill_primary="*gray-50",
        block_shadow="*shadow-sm",
        block_background_fill="white",
    )
    
    # Build interface
    with gr.Blocks(theme=theme, css="""
        .container { margin: 0 auto; max-width: 1200px; padding: 20px; }
        .results { margin-top: 20px; }
        .plot-container { margin-top: 10px; }
    """) as interface:
        gr.Markdown("""
        # 🧬 Enhanced Virus Host Classifier
        
        This tool analyzes viral sequences to predict their host (human vs. non-human) and provides detailed visualizations 
        of the features influencing this classification. Upload or paste a FASTA sequence to begin.
        
        *Using advanced SHAP analysis and interactive visualizations for interpretable results.*
        """)
        
        # Input section
        with gr.Tab("Sequence Analysis"):
            with gr.Row():
                with gr.Column(scale=1):
                    file_input = gr.File(
                        label="Upload FASTA File",
                        file_types=[".fasta", ".fa", ".txt"],
                        type="filepath"
                    )
                    
                    text_input = gr.Textbox(
                        label="Or Paste FASTA Sequence",
                        placeholder=">sequence_name\nACGTACGT...",
                        lines=5
                    )
                    
                    with gr.Row():
                        window_size = gr.Slider(
                            minimum=100,
                            maximum=5000,
                            value=500,
                            step=100,
                            label="Window Size for Region Analysis"
                        )
                        
                        top_kmers = gr.Slider(
                            minimum=5,
                            maximum=30,
                            value=10,
                            step=1,
                            label="Number of Top k-mers to Display"
                        )
                    
                    analyze_btn = gr.Button(
                        "πŸ” Analyze Sequence",
                        variant="primary"
                    )
                
                # Results section
                with gr.Column(scale=2):
                    results_text = gr.Markdown(
                        label="Analysis Results"
                    )
                    
                    # Plots
                    genome_plot = gr.Plot(
                        label="Genome Overview"
                    )
                    
                    with gr.Row():
                        kmer_plot = gr.Plot(
                            label="k-mer Importance"
                        )
                        dist_plot = gr.Plot(
                            label="SHAP Distribution"
                        )
        
        # Help tab
        with gr.Tab("Help & Information"):
            gr.Markdown("""
            ### πŸ“– How to Use This Tool
            
            1. **Input Your Sequence**
               - Upload a FASTA file or paste your sequence in FASTA format
               - The sequence should contain only ACGT bases (non-standard bases will be filtered)
            
            2. **Adjust Parameters**
               - Window Size: Controls the length of regions analyzed for extreme patterns
               - Top k-mers: Number of most influential sequence patterns to display
            
            3. **Interpret Results**
               - Classification: Predicted host (human vs. non-human)
               - Genome Overview: Interactive plot showing SHAP values and GC content
               - k-mer Importance: Most influential sequence patterns
               - SHAP Distribution: Overall distribution of feature importance
            
            ### 🎨 Visualization Guide
            
            - **SHAP Values**: 
              - Positive (red) = pushing toward human classification
              - Negative (blue) = pushing toward non-human classification
              - Zero (white) = neutral impact
            
            - **Extreme Regions**:
              - Highlighted in the genome overview plot
              - Red regions = most human-like
              - Blue regions = most non-human-like
            
            ### πŸ”¬ Technical Details
            
            - The classifier uses k-mer frequencies (k=4) as features
            - SHAP values are calculated using an ablation-based approach
            - GC content is calculated using a sliding window
            """)
        
        # Connect components
        sequence_state = gr.State()
        
        analyze_btn.click(
            process_sequence,
            inputs=[
                file_input,
                text_input,
                window_size,
                top_kmers
            ],
            outputs=[
                results_text,
                [genome_plot, kmer_plot, dist_plot],
                sequence_state
            ]
        )
        
        return interface

###############################################################################
# 7. MAIN ENTRY POINT
###############################################################################

if __name__ == "__main__":
    iface = create_interface()
    iface.launch(
        share=True,
        server_name="0.0.0.0",
        show_error=True
    )
    #