Spaces:
Running
Running
import gradio as gr | |
import torch | |
import joblib | |
import numpy as np | |
from itertools import product | |
import torch.nn as nn | |
import matplotlib.pyplot as plt | |
import matplotlib.colors as mcolors | |
import io | |
from PIL import Image | |
from scipy.interpolate import interp1d | |
import numpy as np | |
############################################################################### | |
# 1. MODEL DEFINITION | |
############################################################################### | |
class VirusClassifier(nn.Module): | |
def __init__(self, input_shape: int): | |
super(VirusClassifier, self).__init__() | |
self.network = nn.Sequential( | |
nn.Linear(input_shape, 64), | |
nn.GELU(), | |
nn.BatchNorm1d(64), | |
nn.Dropout(0.3), | |
nn.Linear(64, 32), | |
nn.GELU(), | |
nn.BatchNorm1d(32), | |
nn.Dropout(0.3), | |
nn.Linear(32, 32), | |
nn.GELU(), | |
nn.Linear(32, 2) | |
) | |
def forward(self, x): | |
return self.network(x) | |
############################################################################### | |
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING | |
############################################################################### | |
def parse_fasta(text): | |
"""Parse FASTA formatted text into a list of (header, sequence).""" | |
sequences = [] | |
current_header = None | |
current_sequence = [] | |
for line in text.strip().split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('>'): | |
if current_header: | |
sequences.append((current_header, ''.join(current_sequence))) | |
current_header = line[1:] | |
current_sequence = [] | |
else: | |
current_sequence.append(line.upper()) | |
if current_header: | |
sequences.append((current_header, ''.join(current_sequence))) | |
return sequences | |
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray: | |
"""Convert a sequence to a k-mer frequency vector for classification.""" | |
kmers = [''.join(p) for p in product("ACGT", repeat=k)] | |
kmer_dict = {km: i for i, km in enumerate(kmers)} | |
vec = np.zeros(len(kmers), dtype=np.float32) | |
for i in range(len(sequence) - k + 1): | |
kmer = sequence[i:i+k] | |
if kmer in kmer_dict: | |
vec[kmer_dict[kmer]] += 1 | |
total_kmers = len(sequence) - k + 1 | |
if total_kmers > 0: | |
vec = vec / total_kmers | |
return vec | |
############################################################################### | |
# 3. SHAP-VALUE (ABLATION) CALCULATION | |
############################################################################### | |
def calculate_shap_values(model, x_tensor): | |
""" | |
Calculate SHAP values using a simple ablation approach. | |
Returns shap_values, prob_human | |
""" | |
model.eval() | |
with torch.no_grad(): | |
# Baseline | |
baseline_output = model(x_tensor) | |
baseline_probs = torch.softmax(baseline_output, dim=1) | |
baseline_prob = baseline_probs[0, 1].item() # Probability of 'human' class | |
# Zeroing each feature to measure impact | |
shap_values = [] | |
x_zeroed = x_tensor.clone() | |
for i in range(x_tensor.shape[1]): | |
original_val = x_zeroed[0, i].item() | |
x_zeroed[0, i] = 0.0 | |
output = model(x_zeroed) | |
probs = torch.softmax(output, dim=1) | |
prob = probs[0, 1].item() | |
impact = baseline_prob - prob | |
shap_values.append(impact) | |
x_zeroed[0, i] = original_val # restore | |
return np.array(shap_values), baseline_prob | |
############################################################################### | |
# 4. PER-BASE SHAP AGGREGATION | |
############################################################################### | |
def compute_positionwise_scores(sequence, shap_values, k=4): | |
""" | |
Returns an array of per-base SHAP contributions by averaging | |
the k-mer SHAP values of all k-mers covering that base. | |
""" | |
kmers = [''.join(p) for p in product("ACGT", repeat=k)] | |
kmer_dict = {km: i for i, km in enumerate(kmers)} | |
seq_len = len(sequence) | |
shap_sums = np.zeros(seq_len, dtype=np.float32) | |
coverage = np.zeros(seq_len, dtype=np.float32) | |
for i in range(seq_len - k + 1): | |
kmer = sequence[i:i+k] | |
if kmer in kmer_dict: | |
val = shap_values[kmer_dict[kmer]] | |
shap_sums[i : i + k] += val | |
coverage[i : i + k] += 1 | |
with np.errstate(divide='ignore', invalid='ignore'): | |
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0) | |
return shap_means | |
############################################################################### | |
# 5. FIND EXTREME SHAP REGIONS | |
############################################################################### | |
def find_extreme_subregion(shap_means, window_size=500, mode="max"): | |
""" | |
Finds the subregion of length `window_size` that has the maximum | |
(mode="max") or minimum (mode="min") average SHAP. | |
Returns (best_start, best_end, best_avg). | |
""" | |
n = len(shap_means) | |
if n == 0: | |
return (0, 0, 0.0) | |
if window_size >= n: | |
# entire sequence | |
avg_val = float(np.mean(shap_means)) | |
return (0, n, avg_val) | |
# We'll build csum of length n+1 | |
csum = np.zeros(n + 1, dtype=np.float32) | |
csum[1:] = np.cumsum(shap_means) | |
best_start = 0 | |
best_sum = csum[window_size] - csum[0] | |
best_avg = best_sum / window_size | |
for start in range(1, n - window_size + 1): | |
wsum = csum[start + window_size] - csum[start] | |
wavg = wsum / window_size | |
if mode == "max": | |
if wavg > best_avg: | |
best_avg = wavg | |
best_start = start | |
else: # mode == "min" | |
if wavg < best_avg: | |
best_avg = wavg | |
best_start = start | |
return (best_start, best_start + window_size, float(best_avg)) | |
############################################################################### | |
# 6. PLOTTING / UTILITIES | |
############################################################################### | |
def fig_to_image(fig): | |
"""Convert a Matplotlib figure to a PIL Image for Gradio.""" | |
buf = io.BytesIO() | |
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150) | |
buf.seek(0) | |
img = Image.open(buf) | |
plt.close(fig) | |
return img | |
def get_zero_centered_cmap(): | |
""" | |
Creates a custom diverging colormap that is: | |
- Blue for negative | |
- White for zero | |
- Red for positive | |
""" | |
colors = [ | |
(0.0, 'blue'), # negative | |
(0.5, 'white'), # zero | |
(1.0, 'red') # positive | |
] | |
cmap = mcolors.LinearSegmentedColormap.from_list("blue_white_red", colors) | |
return cmap | |
def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap", start=None, end=None): | |
""" | |
Plots a 1D heatmap of per-base SHAP contributions with a custom colormap: | |
- Negative = blue | |
- 0 = white | |
- Positive = red | |
""" | |
if start is not None and end is not None: | |
local_shap = shap_means[start:end] | |
subtitle = f" (positions {start}-{end})" | |
else: | |
local_shap = shap_means | |
subtitle = "" | |
if len(local_shap) == 0: | |
local_shap = np.array([0.0]) | |
# Build 2D array for imshow | |
heatmap_data = local_shap.reshape(1, -1) | |
# Force symmetrical range | |
min_val = np.min(local_shap) | |
max_val = np.max(local_shap) | |
extent = max(abs(min_val), abs(max_val)) | |
# Create custom colormap | |
custom_cmap = get_zero_centered_cmap() | |
# Create figure with adjusted height ratio | |
fig, ax = plt.subplots(figsize=(12, 1.8)) # Reduced height | |
# Plot heatmap | |
cax = ax.imshow( | |
heatmap_data, | |
aspect='auto', | |
cmap=custom_cmap, | |
vmin=-extent, | |
vmax=+extent | |
) | |
# Configure colorbar with more subtle positioning | |
cbar = plt.colorbar( | |
cax, | |
orientation='horizontal', | |
pad=0.25, # Reduced padding | |
aspect=40, # Make colorbar thinner | |
shrink=0.8 # Make colorbar shorter than plot width | |
) | |
# Style the colorbar | |
cbar.ax.tick_params(labelsize=8) # Smaller tick labels | |
cbar.set_label( | |
'SHAP Contribution', | |
fontsize=9, | |
labelpad=5 | |
) | |
# Configure main plot | |
ax.set_yticks([]) | |
ax.set_xlabel('Position in Sequence', fontsize=10) | |
ax.set_title(f"{title}{subtitle}", pad=10) | |
# Fine-tune layout | |
plt.subplots_adjust( | |
bottom=0.25, # Reduced bottom margin | |
left=0.05, # Tighter left margin | |
right=0.95 # Tighter right margin | |
) | |
return fig | |
def create_importance_bar_plot(shap_values, kmers, top_k=10): | |
"""Create a bar plot of the most important k-mers.""" | |
plt.rcParams.update({'font.size': 10}) | |
fig = plt.figure(figsize=(10, 5)) | |
# Sort by absolute importance | |
indices = np.argsort(np.abs(shap_values))[-top_k:] | |
values = shap_values[indices] | |
features = [kmers[i] for i in indices] | |
# negative -> blue, positive -> red | |
colors = ['#99ccff' if v < 0 else '#ff9999' for v in values] | |
plt.barh(range(len(values)), values, color=colors) | |
plt.yticks(range(len(values)), features) | |
plt.xlabel('SHAP Value (impact on model output)') | |
plt.title(f'Top {top_k} Most Influential k-mers') | |
plt.gca().invert_yaxis() | |
plt.tight_layout() | |
return fig | |
def plot_shap_histogram(shap_array, title="SHAP Distribution in Region"): | |
""" | |
Simple histogram of SHAP values in the subregion. | |
""" | |
fig, ax = plt.subplots(figsize=(6, 4)) | |
ax.hist(shap_array, bins=30, color='gray', edgecolor='black') | |
ax.axvline(0, color='red', linestyle='--', label='0.0') | |
ax.set_xlabel("SHAP Value") | |
ax.set_ylabel("Count") | |
ax.set_title(title) | |
ax.legend() | |
plt.tight_layout() | |
return fig | |
def compute_gc_content(sequence): | |
"""Compute %GC in the sequence (A, C, G, T).""" | |
if not sequence: | |
return 0 | |
gc_count = sequence.count('G') + sequence.count('C') | |
return (gc_count / len(sequence)) * 100.0 | |
############################################################################### | |
# 7. MAIN ANALYSIS STEP (Gradio Step 1) | |
############################################################################### | |
def analyze_sequence(file_obj, top_kmers=10, fasta_text="", window_size=500): | |
""" | |
Analyzes the entire genome, returning classification, full-genome heatmap, | |
top k-mer bar plot, and identifies subregions with strongest positive/negative push. | |
""" | |
# Handle input | |
if fasta_text.strip(): | |
text = fasta_text.strip() | |
elif file_obj is not None: | |
try: | |
with open(file_obj, 'r') as f: | |
text = f.read() | |
except Exception as e: | |
return (f"Error reading file: {str(e)}", None, None, None, None) | |
else: | |
return ("Please provide a FASTA sequence.", None, None, None, None) | |
# Parse FASTA | |
sequences = parse_fasta(text) | |
if not sequences: | |
return ("No valid FASTA sequences found.", None, None, None, None) | |
header, seq = sequences[0] | |
# Load model and scaler | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
try: | |
# Use weights_only=True for safer loading | |
state_dict = torch.load('model.pt', map_location=device, weights_only=True) | |
model = VirusClassifier(256).to(device) | |
model.load_state_dict(state_dict) | |
scaler = joblib.load('scaler.pkl') | |
except Exception as e: | |
return (f"Error loading model/scaler: {str(e)}", None, None, None, None) | |
# Vectorize + scale | |
freq_vector = sequence_to_kmer_vector(seq) | |
scaled_vector = scaler.transform(freq_vector.reshape(1, -1)) | |
x_tensor = torch.FloatTensor(scaled_vector).to(device) | |
# SHAP + classification | |
shap_values, prob_human = calculate_shap_values(model, x_tensor) | |
prob_nonhuman = 1.0 - prob_human | |
classification = "Human" if prob_human > 0.5 else "Non-human" | |
confidence = max(prob_human, prob_nonhuman) | |
# Per-base SHAP | |
shap_means = compute_positionwise_scores(seq, shap_values, k=4) | |
# Find the most "human-pushing" region | |
(max_start, max_end, max_avg) = find_extreme_subregion(shap_means, window_size, mode="max") | |
# Find the most "non-human–pushing" region | |
(min_start, min_end, min_avg) = find_extreme_subregion(shap_means, window_size, mode="min") | |
# Build results text | |
results_text = ( | |
f"Sequence: {header}\n" | |
f"Length: {len(seq):,} bases\n" | |
f"Classification: {classification}\n" | |
f"Confidence: {confidence:.3f}\n" | |
f"(Human Probability: {prob_human:.3f}, Non-human Probability: {prob_nonhuman:.3f})\n\n" | |
f"---\n" | |
f"**Most Human-Pushing {window_size}-bp Subregion**:\n" | |
f"Start: {max_start}, End: {max_end}, Avg SHAP: {max_avg:.4f}\n\n" | |
f"**Most Non-Human–Pushing {window_size}-bp Subregion**:\n" | |
f"Start: {min_start}, End: {min_end}, Avg SHAP: {min_avg:.4f}" | |
) | |
# K-mer importance plot | |
kmers = [''.join(p) for p in product("ACGT", repeat=4)] | |
bar_fig = create_importance_bar_plot(shap_values, kmers, top_kmers) | |
bar_img = fig_to_image(bar_fig) | |
# Full-genome SHAP heatmap | |
heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide SHAP") | |
heatmap_img = fig_to_image(heatmap_fig) | |
# Store data for subregion analysis | |
state_dict_out = { | |
"seq": seq, | |
"shap_means": shap_means | |
} | |
return (results_text, bar_img, heatmap_img, state_dict_out, header) | |
############################################################################### | |
# 8. SUBREGION ANALYSIS (Gradio Step 2) | |
############################################################################### | |
def analyze_subregion(state, header, region_start, region_end): | |
""" | |
Takes stored data from step 1 and a user-chosen region. | |
Returns a subregion heatmap, histogram, and some stats (GC, average SHAP). | |
""" | |
if not state or "seq" not in state or "shap_means" not in state: | |
return ("No sequence data found. Please run Step 1 first.", None, None) | |
seq = state["seq"] | |
shap_means = state["shap_means"] | |
# Validate bounds | |
region_start = int(region_start) | |
region_end = int(region_end) | |
region_start = max(0, min(region_start, len(seq))) | |
region_end = max(0, min(region_end, len(seq))) | |
if region_end <= region_start: | |
return ("Invalid region range. End must be > Start.", None, None) | |
# Subsequence | |
region_seq = seq[region_start:region_end] | |
region_shap = shap_means[region_start:region_end] | |
# Some stats | |
gc_percent = compute_gc_content(region_seq) | |
avg_shap = float(np.mean(region_shap)) | |
# Fraction pushing toward human vs. non-human | |
positive_fraction = np.mean(region_shap > 0) | |
negative_fraction = np.mean(region_shap < 0) | |
# Simple logic-based interpretation | |
if avg_shap > 0.05: | |
region_classification = "Likely pushing toward human" | |
elif avg_shap < -0.05: | |
region_classification = "Likely pushing toward non-human" | |
else: | |
region_classification = "Near neutral (no strong push)" | |
region_info = ( | |
f"Analyzing subregion of {header} from {region_start} to {region_end}\n" | |
f"Region length: {len(region_seq)} bases\n" | |
f"GC content: {gc_percent:.2f}%\n" | |
f"Average SHAP in region: {avg_shap:.4f}\n" | |
f"Fraction with SHAP > 0 (toward human): {positive_fraction:.2f}\n" | |
f"Fraction with SHAP < 0 (toward non-human): {negative_fraction:.2f}\n" | |
f"Subregion interpretation: {region_classification}\n" | |
) | |
# Plot region as small heatmap | |
heatmap_fig = plot_linear_heatmap( | |
shap_means, | |
title="Subregion SHAP", | |
start=region_start, | |
end=region_end | |
) | |
heatmap_img = fig_to_image(heatmap_fig) | |
# Plot histogram of SHAP in region | |
hist_fig = plot_shap_histogram(region_shap, title="SHAP Distribution in Subregion") | |
hist_img = fig_to_image(hist_fig) | |
return (region_info, heatmap_img, hist_img) | |
############################################################################### | |
# NEW SECTION: COMPARATIVE ANALYSIS FUNCTIONS | |
############################################################################### | |
def normalize_shap_lengths(shap1, shap2, num_points=1000): | |
""" | |
Normalize two SHAP arrays to the same length using interpolation. | |
Returns (normalized_shap1, normalized_shap2) | |
""" | |
# Create x coordinates for both sequences | |
x1 = np.linspace(0, 1, len(shap1)) | |
x2 = np.linspace(0, 1, len(shap2)) | |
# Create interpolation functions | |
f1 = interp1d(x1, shap1, kind='linear') | |
f2 = interp1d(x2, shap2, kind='linear') | |
# Create new x coordinates for interpolation | |
x_new = np.linspace(0, 1, num_points) | |
# Interpolate both sequences to new length | |
shap1_norm = f1(x_new) | |
shap2_norm = f2(x_new) | |
return shap1_norm, shap2_norm | |
def compute_shap_difference(shap1_norm, shap2_norm): | |
""" | |
Compute the difference between two normalized SHAP arrays. | |
Positive values indicate seq2 is more "human-like" than seq1. | |
""" | |
return shap2_norm - shap1_norm | |
def plot_comparative_heatmap(shap_diff, title="SHAP Difference Heatmap"): | |
""" | |
Plot the difference between two sequences' SHAP values. | |
Red indicates seq2 is more human-like, blue indicates seq1 is more human-like. | |
""" | |
# Build 2D array for imshow | |
heatmap_data = shap_diff.reshape(1, -1) | |
# Force symmetrical range | |
extent = max(abs(np.min(shap_diff)), abs(np.max(shap_diff))) | |
# Create figure with adjusted height ratio | |
fig, ax = plt.subplots(figsize=(12, 1.8)) | |
# Create custom colormap | |
custom_cmap = get_zero_centered_cmap() | |
# Plot heatmap | |
cax = ax.imshow( | |
heatmap_data, | |
aspect='auto', | |
cmap=custom_cmap, | |
vmin=-extent, | |
vmax=+extent | |
) | |
# Configure colorbar | |
cbar = plt.colorbar( | |
cax, | |
orientation='horizontal', | |
pad=0.25, | |
aspect=40, | |
shrink=0.8 | |
) | |
# Style the colorbar | |
cbar.ax.tick_params(labelsize=8) | |
cbar.set_label( | |
'SHAP Difference (Seq2 - Seq1)', | |
fontsize=9, | |
labelpad=5 | |
) | |
# Configure main plot | |
ax.set_yticks([]) | |
ax.set_xlabel('Normalized Position (0-100%)', fontsize=10) | |
ax.set_title(title, pad=10) | |
plt.subplots_adjust( | |
bottom=0.25, | |
left=0.05, | |
right=0.95 | |
) | |
return fig | |
def analyze_sequence_comparison(file1, file2, fasta1="", fasta2=""): | |
""" | |
Compare two sequences by analyzing their SHAP differences. | |
Returns comparison text and visualizations. | |
""" | |
# Process first sequence | |
results1 = analyze_sequence(file1, fasta_text=fasta1) | |
if isinstance(results1[0], str) and "Error" in results1[0]: | |
return (f"Error in sequence 1: {results1[0]}", None, None) | |
# Process second sequence | |
results2 = analyze_sequence(file2, fasta_text=fasta2) | |
if isinstance(results2[0], str) and "Error" in results2[0]: | |
return (f"Error in sequence 2: {results2[0]}", None, None) | |
# Get SHAP means from state dictionaries | |
shap1 = results1[3]["shap_means"] | |
shap2 = results2[3]["shap_means"] | |
# Normalize lengths | |
shap1_norm, shap2_norm = normalize_shap_lengths(shap1, shap2) | |
# Compute difference (positive = seq2 more human-like) | |
shap_diff = compute_shap_difference(shap1_norm, shap2_norm) | |
# Calculate some statistics | |
avg_diff = np.mean(shap_diff) | |
std_diff = np.std(shap_diff) | |
max_diff = np.max(shap_diff) | |
min_diff = np.min(shap_diff) | |
# Calculate what fraction of positions show substantial differences | |
threshold = 0.05 # Arbitrary threshold for "substantial" difference | |
substantial_diffs = np.abs(shap_diff) > threshold | |
frac_different = np.mean(substantial_diffs) | |
# Generate comparison text | |
# Format the numbers without using f-string with `:,` | |
len1_formatted = "{:,}".format(len(shap1)) | |
len2_formatted = "{:,}".format(len(shap2)) | |
frac_formatted = "{:.2%}".format(frac_different) | |
comparison_text = ( | |
f"Sequence Comparison Results:\n" | |
f"Sequence 1: {results1[4]}\n" | |
f"Length: {len1_formatted} bases\n" | |
f"Classification: {results1[0].split('Classification: ')[1].split('\\n')[0]}\n\n" | |
f"Sequence 2: {results2[4]}\n" | |
f"Length: {len2_formatted} bases\n" | |
f"Classification: {results2[0].split('Classification: ')[1].split('\\n')[0]}\n\n" | |
f"Comparison Statistics:\n" | |
f"Average SHAP difference: {avg_diff:.4f}\n" | |
f"Standard deviation: {std_diff:.4f}\n" | |
f"Max difference: {max_diff:.4f} (Seq2 more human-like)\n" | |
f"Min difference: {min_diff:.4f} (Seq1 more human-like)\n" | |
f"Fraction of positions with substantial differences: {frac_formatted}\n\n" | |
f"Interpretation:\n" | |
f"Positive values (red) indicate regions where Sequence 2 is more 'human-like'\n" | |
f"Negative values (blue) indicate regions where Sequence 1 is more 'human-like'" | |
) | |
# Create comparison heatmap | |
heatmap_fig = plot_comparative_heatmap(shap_diff) | |
heatmap_img = fig_to_image(heatmap_fig) | |
# Create histogram of differences | |
hist_fig = plot_shap_histogram( | |
shap_diff, | |
title="Distribution of SHAP Differences" | |
) | |
hist_img = fig_to_image(hist_fig) | |
return comparison_text, heatmap_img, hist_img | |
############################################################################### | |
# 9. BUILD GRADIO INTERFACE | |
############################################################################### | |
css = """ | |
.gradio-container { | |
font-family: 'IBM Plex Sans', sans-serif; | |
} | |
""" | |
with gr.Blocks(css=css) as iface: | |
gr.Markdown(""" | |
# Virus Host Classifier | |
**Step 1**: Predict overall viral sequence origin (human vs non-human) and identify extreme regions. | |
**Step 2**: Explore subregions to see local SHAP signals, distribution, GC content, etc. | |
**Color Scale**: Negative SHAP = Blue, Zero = White, Positive = Red. | |
""") | |
with gr.Tab("1) Full-Sequence Analysis"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
file_input = gr.File( | |
label="Upload FASTA file", | |
file_types=[".fasta", ".fa", ".txt"], | |
type="filepath" | |
) | |
text_input = gr.Textbox( | |
label="Or paste FASTA sequence", | |
placeholder=">sequence_name\nACGTACGT...", | |
lines=5 | |
) | |
top_k = gr.Slider( | |
minimum=5, | |
maximum=30, | |
value=10, | |
step=1, | |
label="Number of top k-mers to display" | |
) | |
win_size = gr.Slider( | |
minimum=100, | |
maximum=5000, | |
value=500, | |
step=100, | |
label="Window size for 'most pushing' subregions" | |
) | |
analyze_btn = gr.Button("Analyze Sequence", variant="primary") | |
with gr.Column(scale=2): | |
results_box = gr.Textbox( | |
label="Classification Results", lines=12, interactive=False | |
) | |
kmer_img = gr.Image(label="Top k-mer SHAP") | |
genome_img = gr.Image(label="Genome-wide SHAP Heatmap (Blue=neg, White=0, Red=pos)") | |
seq_state = gr.State() | |
header_state = gr.State() | |
# analyze_sequence(...) returns 5 items | |
analyze_btn.click( | |
analyze_sequence, | |
inputs=[file_input, top_k, text_input, win_size], | |
outputs=[results_box, kmer_img, genome_img, seq_state, header_state] | |
) | |
with gr.Tab("2) Subregion Exploration"): | |
gr.Markdown(""" | |
**Subregion Analysis** | |
Select start/end positions to view local SHAP signals, distribution, and GC content. | |
The heatmap also uses the same Blue-White-Red scale. | |
""") | |
with gr.Row(): | |
region_start = gr.Number(label="Region Start", value=0) | |
region_end = gr.Number(label="Region End", value=500) | |
region_btn = gr.Button("Analyze Subregion") | |
subregion_info = gr.Textbox( | |
label="Subregion Analysis", | |
lines=7, | |
interactive=False | |
) | |
with gr.Row(): | |
subregion_img = gr.Image(label="Subregion SHAP Heatmap (B-W-R)") | |
subregion_hist_img = gr.Image(label="SHAP Distribution (Histogram)") | |
region_btn.click( | |
analyze_subregion, | |
inputs=[seq_state, header_state, region_start, region_end], | |
outputs=[subregion_info, subregion_img, subregion_hist_img] | |
) | |
with gr.Tab("3) Comparative Analysis"): | |
gr.Markdown(""" | |
**Compare Two Sequences** | |
Upload or paste two FASTA sequences to compare their SHAP patterns. | |
The sequences will be normalized to the same length for comparison. | |
**Color Scale**: | |
- Red: Sequence 2 is more human-like in this region | |
- Blue: Sequence 1 is more human-like in this region | |
- White: No substantial difference | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
file_input1 = gr.File( | |
label="Upload first FASTA file", | |
file_types=[".fasta", ".fa", ".txt"], | |
type="filepath" | |
) | |
text_input1 = gr.Textbox( | |
label="Or paste first FASTA sequence", | |
placeholder=">sequence1\nACGTACGT...", | |
lines=5 | |
) | |
with gr.Column(scale=1): | |
file_input2 = gr.File( | |
label="Upload second FASTA file", | |
file_types=[".fasta", ".fa", ".txt"], | |
type="filepath" | |
) | |
text_input2 = gr.Textbox( | |
label="Or paste second FASTA sequence", | |
placeholder=">sequence2\nACGTACGT...", | |
lines=5 | |
) | |
compare_btn = gr.Button("Compare Sequences", variant="primary") | |
comparison_text = gr.Textbox( | |
label="Comparison Results", | |
lines=12, | |
interactive=False | |
) | |
with gr.Row(): | |
diff_heatmap = gr.Image(label="SHAP Difference Heatmap") | |
diff_hist = gr.Image(label="Distribution of SHAP Differences") | |
compare_btn.click( | |
analyze_sequence_comparison, | |
inputs=[file_input1, file_input2, text_input1, text_input2], | |
outputs=[comparison_text, diff_heatmap, diff_hist] | |
) | |
gr.Markdown(""" | |
### Interface Features | |
- **Overall Classification** (human vs non-human) using k-mer frequencies. | |
- **SHAP Analysis** to see which k-mers push classification toward or away from human. | |
- **White-Centered SHAP Gradient**: | |
- Negative (blue), 0 (white), Positive (red), with symmetrical color range around 0. | |
- **Identify Subregions** with the strongest push for human or non-human. | |
- **Subregion Exploration**: | |
- Local SHAP heatmap & histogram | |
- GC content | |
- Fraction of positions pushing human vs. non-human | |
- Simple logic-based classification | |
""") | |
if __name__ == "__main__": | |
iface.launch() |