HostClassifier / app.py
hiyata's picture
Update app.py
d192dd4 verified
raw
history blame
16.3 kB
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
import shap # Requires: pip install shap
###############################################################################
# Model Definition
###############################################################################
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
###############################################################################
# Utility Functions
###############################################################################
def parse_fasta(text):
"""
Parses text input in FASTA format into a list of (header, sequence).
Handles multiple sequences if present.
"""
sequences = []
current_header = None
current_sequence = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""
Convert a single nucleotide sequence to a k-mer frequency vector
of length 4^k (e.g., for k=4, length=256).
"""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers # normalize frequencies
return vec
###############################################################################
# Visualization Helpers
###############################################################################
def create_freq_sigma_plot(
single_shap_values: np.ndarray,
raw_freq_vector: np.ndarray,
scaled_vector: np.ndarray,
kmer_list,
title: str
):
"""
Creates a bar plot showing top-10 k-mers (by absolute SHAP value),
with frequency (%) and sigma from mean on a twin-axis.
single_shap_values: shape=(256,) shap values for this sample
raw_freq_vector: shape=(256,) original frequencies for this sample
scaled_vector: shape=(256,) scaled (Z-score) values for this sample
kmer_list: list of all k-mers (length=256)
"""
abs_vals = np.abs(single_shap_values)
top_k = 10
top_indices = np.argsort(abs_vals)[-top_k:][::-1] # top 10 by absolute shap
top_data = []
for idx in top_indices:
top_data.append({
"kmer": kmer_list[idx],
"shap": single_shap_values[idx],
"abs_shap": abs_vals[idx],
"frequency": raw_freq_vector[idx] * 100.0, # percentage
"sigma": scaled_vector[idx]
})
# Sort top_data by abs_shap descending
top_data.sort(key=lambda x: x["abs_shap"], reverse=True)
kmers = [d["kmer"] for d in top_data]
freqs = [d["frequency"] for d in top_data]
sigmas = [d["sigma"] for d in top_data]
# color by sign (positive=green, negative=red)
colors = ["green" if d["shap"] >= 0 else "red" for d in top_data]
x = np.arange(len(kmers))
width = 0.4
fig, ax = plt.subplots(figsize=(8, 5))
# Frequency
ax.bar(x - width/2, freqs, width, color=colors, alpha=0.7, label="Frequency (%)")
ax.set_ylabel("Frequency (%)", color='black')
ax.set_ylim(0, max(freqs)*1.2 if len(freqs) else 1)
# Twin axis for sigma
ax2 = ax.twinx()
ax2.bar(x + width/2, sigmas, width, color="gray", alpha=0.5, label="σ from Mean")
ax2.set_ylabel("Standard Deviations (σ)", color='black')
ax.set_xticks(x)
ax.set_xticklabels(kmers, rotation=45, ha='right')
ax.set_title(f"Top-10 K-mers (Frequency & σ)\n{title}")
# Combine legends
lines1, labels1 = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax.legend(lines1 + lines2, labels1 + labels2, loc='upper right')
plt.tight_layout()
return fig
###############################################################################
# Main Inference & SHAP Logic
###############################################################################
def run_classification_and_shap(file_obj):
"""
Reads one or more FASTA sequences from file_obj or text.
Returns:
- Table of results (list of dicts) for each sequence
- shap_values object (SHAP values for the entire batch)
- array/batch of scaled vectors (for use in the waterfall selection)
- list of k-mers (for indexing)
- possibly the model or other context
"""
# 1. Basic read
if isinstance(file_obj, str):
text = file_obj
else:
try:
text = file_obj.decode("utf-8")
except Exception as e:
return None, None, f"Error reading file: {str(e)}"
# 2. Parse FASTA
sequences = parse_fasta(text)
if len(sequences) == 0:
return None, None, "No valid FASTA sequences found!"
# 3. Convert each sequence to k-mer vector
k = 4
all_raw_vectors = []
headers = []
seqs = []
for (hdr, seq) in sequences:
raw_vec = sequence_to_kmer_vector(seq, k=k)
all_raw_vectors.append(raw_vec)
headers.append(hdr)
seqs.append(seq)
all_raw_vectors = np.stack(all_raw_vectors, axis=0) # shape=(num_seqs, 256)
# 4. Load model & scaler
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
model = VirusClassifier(input_shape=4**k).to(device)
state_dict = torch.load("model.pt", map_location=device)
model.load_state_dict(state_dict)
model.eval()
scaler = joblib.load("scaler.pkl")
except Exception as e:
return None, None, f"Error loading model or scaler: {str(e)}"
# 5. Scale data
scaled_data = scaler.transform(all_raw_vectors) # shape=(num_seqs, 256)
# 6. Predictions
X_tensor = torch.FloatTensor(scaled_data).to(device)
with torch.no_grad():
logits = model(X_tensor)
probs = torch.softmax(logits, dim=1).cpu().numpy()
preds = np.argmax(probs, axis=1) # 0 or 1
results_table = []
for i, (hdr, seq) in enumerate(zip(headers, seqs)):
results_table.append({
"header": hdr,
"sequence": seq[:50] + ("..." if len(seq)>50 else ""), # truncated
"pred_label": "human" if preds[i] == 1 else "non-human",
"human_prob": float(probs[i][1]),
"non_human_prob": float(probs[i][0]),
"confidence": float(max(probs[i]))
})
# 7. SHAP Explainer
# We'll pick a background subset if there are many sequences
# (For performance, we might limit to e.g. 50 samples max)
if scaled_data.shape[0] > 50:
background_data = scaled_data[:50]
else:
background_data = scaled_data
# Use the "new" unified shap.Explainer approach
# We pass in a function that does the forward pass. Or pass the model directly.
# For PyTorch models, shap can do a direct 'model' approach with a mask.
# We'll do a simple "use shap.Explainer" with data=background_data
explainer = shap.Explainer(model, background_data)
shap_values = explainer(scaled_data) # shape=(num_samples, num_features)
# k-mer list
kmer_list = [''.join(p) for p in product("ACGT", repeat=k)]
return (results_table, shap_values, scaled_data, kmer_list, None)
###############################################################################
# Gradio Callback Functions
###############################################################################
def main_predict(file_obj):
"""
This function is triggered by the 'Run' button in Gradio.
It returns a markdown of all sequences/predictions and stores
data needed for the subsequent SHAP visualizations.
"""
results, shap_vals, scaled_data, kmer_list, err = run_classification_and_shap(file_obj)
if err:
return (err, None, None, None, None)
if results is None or shap_vals is None:
return ("An unknown error occurred.", None, None, None, None)
# Build a summary for all sequences
md = "# Classification Results\n\n"
md += "| # | Header | Pred Label | Confidence | Human Prob | Non-human Prob |\n"
md += "|---|--------|------------|------------|------------|----------------|\n"
for i, row in enumerate(results):
md += (
f"| {i} | {row['header']} | {row['pred_label']} | "
f"{row['confidence']:.4f} | {row['human_prob']:.4f} | {row['non_human_prob']:.4f} |\n"
)
md += "\nSelect a sequence index below to view SHAP Waterfall & Frequency plots."
# Return the string, and also the shap values plus data needed
# We'll store these to SessionState via Gradio's "State" or we can
# pass them out as hidden fields.
return (md, shap_vals, scaled_data, kmer_list, results)
def update_waterfall_plot(selected_index, shap_values_obj):
"""
Build a waterfall plot for the user-selected sample.
"""
if shap_values_obj is None:
return None
try:
selected_index = int(selected_index)
except:
selected_index = 0
# We'll create the figure by calling shap.plots.waterfall
# Convert shap_values_obj to the new shap interface
# shap_values_obj is a shap._explanation.Explanation typically
# We can create a figure with shap.plots.waterfall and capture it as an image
shap_plots_fig = plt.figure(figsize=(8, 5))
shap.plots.waterfall(shap_values_obj[selected_index], max_display=14,
show=False) # show=False so it doesn't pop in the notebook
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', dpi=120)
buf.seek(0)
wf_img = Image.open(buf)
plt.close(shap_plots_fig)
return wf_img
def update_beeswarm_plot(shap_values_obj):
"""
Build a beeswarm plot across all samples.
"""
if shap_values_obj is None:
return None
beeswarm_fig = plt.figure(figsize=(8, 5))
shap.plots.beeswarm(shap_values_obj, show=False)
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', dpi=120)
buf.seek(0)
bs_img = Image.open(buf)
plt.close(beeswarm_fig)
return bs_img
def update_freq_plot(selected_index, shap_values_obj, scaled_data, kmer_list, file_obj):
"""
Create the frequency & sigma bar chart for the selected sequence's top-10 k-mers.
We'll need to also compute the raw_freq_vector from the original unscaled data.
"""
if shap_values_obj is None or scaled_data is None or kmer_list is None:
return None
try:
selected_index = int(selected_index)
except:
selected_index = 0
# We must re-generate the raw freq vector from the original input file
# or store it from earlier. Let's just re-run parse for that single sequence:
# But simpler is: run_classification_and_shap was storing all_raw_vectors...
# Let's do a quick approach: run_classification_and_shap already computed it
# but we didn't store it. We'll re-run the parse logic to get the raw freq again.
# For memory / speed reasons, better is to store it.
# For simplicity, let's parse again quickly:
if isinstance(file_obj, str):
text = file_obj
else:
text = file_obj.decode('utf-8')
sequences = parse_fasta(text)
# the selected_index might be out of range, so let's clamp it
if selected_index >= len(sequences):
selected_index = 0
seq = sequences[selected_index][1] # get the sequence
raw_vec = sequence_to_kmer_vector(seq, k=4)
single_shap_values = shap_values_obj.values[selected_index]
freq_sigma_fig = create_freq_sigma_plot(
single_shap_values,
raw_freq_vector=raw_vec,
scaled_vector=scaled_data[selected_index],
kmer_list=kmer_list,
title=f"Sample #{selected_index}{sequences[selected_index][0]}"
)
buf = io.BytesIO()
freq_sigma_fig.savefig(buf, format='png', bbox_inches='tight', dpi=120)
buf.seek(0)
fs_img = Image.open(buf)
plt.close(freq_sigma_fig)
return fs_img
###############################################################################
# Gradio Interface
###############################################################################
with gr.Blocks(title="Multi-Sequence Virus Host Classifier with SHAP") as demo:
shap.initjs() # load shap JS for interactive plots in some contexts (optional)
gr.Markdown(
"""
# **Advanced Virus Host Classifier with SHAP**
**Upload a FASTA file** with one or more nucleotide sequences.
This app will:
1. Predict each sequence's **host** (human vs. non-human).
2. Provide **SHAP** explanations (waterfall & beeswarm).
3. Let you explore **frequency & σ** for top-10 k-mers for a chosen sequence.
"""
)
with gr.Row():
file_input = gr.File(label="Upload FASTA", type="binary")
run_btn = gr.Button("Run Classification")
# Store intermediate results in "States" for usage in subsequent tabs
shap_values_state = gr.State()
scaled_data_state = gr.State()
kmer_list_state = gr.State()
results_state = gr.State()
# We'll also store the "raw input" so we can reconstruct freq data for each sample
file_data_state = gr.State()
# TABS for outputs
with gr.Tabs():
with gr.Tab("Results Table"):
md_out = gr.Markdown()
with gr.Tab("SHAP Waterfall"):
# We'll let user pick the sequence index from a dropdown or slider
with gr.Row():
seq_index_dropdown = gr.Number(label="Sequence Index (0-based)", value=0, precision=0)
update_wf_btn = gr.Button("Update Waterfall")
wf_plot = gr.Image(label="SHAP Waterfall Plot")
with gr.Tab("SHAP Beeswarm"):
bs_plot = gr.Image(label="Global Beeswarm Plot", height=500)
with gr.Tab("Top-10 Frequency & Sigma"):
with gr.Row():
seq_index_dropdown2 = gr.Number(label="Sequence Index (0-based)", value=0, precision=0)
update_fs_btn = gr.Button("Update Frequency Chart")
fs_plot = gr.Image(label="Top-10 Frequency & σ Chart")
# --- Button Logic ---
run_btn.click(
fn=main_predict,
inputs=[file_input],
outputs=[md_out, shap_values_state, scaled_data_state, kmer_list_state, results_state]
)
run_btn.click( # Also store the raw file data for later freq plots
fn=lambda x: x,
inputs=file_input,
outputs=file_data_state
)
update_wf_btn.click(
fn=update_waterfall_plot,
inputs=[seq_index_dropdown, shap_values_state],
outputs=[wf_plot]
)
update_fs_btn.click(
fn=update_freq_plot,
inputs=[seq_index_dropdown2, shap_values_state, scaled_data_state, kmer_list_state, file_data_state],
outputs=[fs_plot]
)
# We can auto-generate the beeswarm right after classification as well
run_btn.click(
fn=update_beeswarm_plot,
inputs=[shap_values_state],
outputs=[bs_plot]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)