Binder / utils /mmqa /evaluator.py
Timothyxxx
Add missed MMQA
7de3018
raw
history blame
14.6 kB
import re
import string
import numpy as np
from collections import Counter
from typing import List, Set, Tuple, Union
from scipy.optimize import linear_sum_assignment
from word2number.w2n import word_to_num
import json
# copy from https://github.com/allenai/multimodalqa/blob/master/baselines/evaluate.py
ALL_QUESTION_TYPES = [
'TextQ',
'TableQ',
'ImageQ',
'ImageListQ',
'Compose(TableQ,ImageListQ)',
'Compose(TextQ,ImageListQ)',
'Compose(ImageQ,TableQ)',
'Compose(ImageQ,TextQ)',
'Compose(TextQ,TableQ)',
'Compose(TableQ,TextQ)',
'Intersect(TableQ,TextQ)',
'Intersect(ImageListQ,TableQ)',
'Intersect(ImageListQ,TextQ)',
'Compare(Compose(TableQ,ImageQ),TableQ)',
'Compare(Compose(TableQ,ImageQ),Compose(TableQ,TextQ))',
'Compare(TableQ,Compose(TableQ,TextQ))',
]
TEXT_SINGLE_HOP_QUESTION_TYPES = [
'TextQ',
]
TEXT_AS_FIRST_HOP_QUESTION_TYPES = [
'Compare(TableQ,Compose(TableQ,TextQ))',
'Compose(ImageQ,TextQ)',
'Compose(TableQ,TextQ)',
'Intersect(TableQ,TextQ)',
'Intersect(ImageListQ,TextQ)',
]
TEXT_AS_SECOND_HOP_QUESTION_TYPES = [
'Compare(Compose(TableQ,ImageQ),Compose(TableQ,TextQ))',
'Compose(TextQ,ImageListQ)',
'Compose(TextQ,TableQ)',
]
TABLE_SINGLE_HOP_QUESTION_TYPES = [
"TableQ"
]
TABLE_AS_FIRST_HOP_QUESTION_TYPES = [
'Compose(ImageQ,TableQ)',
'Compose(TextQ,TableQ)',
]
TABLE_AS_SECOND_HOP_QUESTION_TYPES = [
'Compare(Compose(TableQ,ImageQ),TableQ)',
'Compare(TableQ,Compose(TableQ,TextQ))',
'Compose(TableQ,ImageListQ)',
'Compose(TableQ,TextQ)',
'Intersect(ImageListQ,TableQ)',
'Intersect(TableQ,TextQ)',
]
IMAGE_SINGLE_HOP_QUESTION_TYPES = [
'ImageQ',
'ImageListQ'
]
IMAGE_AS_FIRST_HOP_QUESTION_TYPES = [
'Compare(Compose(TableQ,ImageQ),Compose(TableQ,TextQ))',
'Compare(Compose(TableQ,ImageQ),TableQ)',
'Compose(TableQ,ImageListQ)',
'Compose(TextQ,ImageListQ)',
'Intersect(ImageListQ,TableQ)',
]
IMAGE_AS_SECOND_HOP_QUESTION_TYPES = [
'Compose(ImageQ,TableQ)',
'Compose(ImageQ,TextQ)',
'Intersect(ImageListQ,TextQ)',
]
# every question should be answered either as a single hop question, or two-hop question
assert set(TEXT_SINGLE_HOP_QUESTION_TYPES + TEXT_AS_SECOND_HOP_QUESTION_TYPES
+ TABLE_SINGLE_HOP_QUESTION_TYPES + TABLE_AS_SECOND_HOP_QUESTION_TYPES
+ IMAGE_SINGLE_HOP_QUESTION_TYPES + IMAGE_AS_SECOND_HOP_QUESTION_TYPES) == set(ALL_QUESTION_TYPES)
assert len(set(TEXT_SINGLE_HOP_QUESTION_TYPES) & set(TEXT_AS_SECOND_HOP_QUESTION_TYPES)) == 0
assert len(set(TABLE_SINGLE_HOP_QUESTION_TYPES) & set(TABLE_AS_SECOND_HOP_QUESTION_TYPES)) == 0
assert len(set(IMAGE_SINGLE_HOP_QUESTION_TYPES) & set(IMAGE_AS_SECOND_HOP_QUESTION_TYPES)) == 0
SINGLE_HOP_QUESTION_TYPES = TEXT_SINGLE_HOP_QUESTION_TYPES \
+ TABLE_SINGLE_HOP_QUESTION_TYPES \
+ IMAGE_SINGLE_HOP_QUESTION_TYPES
MULTI_HOP_QUESTION_TYPES = TEXT_AS_SECOND_HOP_QUESTION_TYPES \
+ TABLE_AS_SECOND_HOP_QUESTION_TYPES + \
IMAGE_AS_SECOND_HOP_QUESTION_TYPES
# no duplicated multi-hop question types
assert len(MULTI_HOP_QUESTION_TYPES) == len(set(MULTI_HOP_QUESTION_TYPES))
# no duplication for the first hop
assert set(TEXT_AS_FIRST_HOP_QUESTION_TYPES + TABLE_AS_FIRST_HOP_QUESTION_TYPES + IMAGE_AS_FIRST_HOP_QUESTION_TYPES) \
== set(MULTI_HOP_QUESTION_TYPES)
# single + multi = all
assert set(SINGLE_HOP_QUESTION_TYPES + MULTI_HOP_QUESTION_TYPES) == set(ALL_QUESTION_TYPES)
def process_question_for_implicit_decomp(question, question_type, hop=0, bridge_entity='', sep_token='[SEP]'):
if isinstance(bridge_entity, list) or isinstance(bridge_entity, set):
bridge_entity = "; ".join(bridge_entity)
return (
f'{question_type} {sep_token} '
f'HOP={hop} {sep_token} '
f'{bridge_entity} {sep_token} '
f'{question}')
def extract_numbers_from_str(s):
numbers = []
for token in s.split():
try:
num = int(token.replace(",", ""))
except:
try:
num = float(token)
except:
num = None
if num:
numbers.append(num)
return numbers
def read_jsonl(filename):
with open(filename, 'r') as f:
data = [json.loads(l.strip()) for l in f.readlines()]
return data
# From here through _match_numbers_if_present was originally copied from the evaluation code of DROP dataset:
# https://github.com/allenai/allennlp-reading-comprehension/blob/master/allennlp_rc/eval/drop_eval.py
def _remove_articles(text: str) -> str:
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
return re.sub(regex, " ", text)
def _white_space_fix(text: str) -> str:
return " ".join(text.split())
EXCLUDE = set(string.punctuation)
def _remove_punc(text: str) -> str:
if not _is_number(text):
return "".join(ch for ch in text if ch not in EXCLUDE)
else:
return text
def _lower(text: str) -> str:
return text.lower()
def _tokenize(text: str) -> List[str]:
return re.split(" |-", text)
def _normalize_answer(text: str) -> str:
"""Lower text and remove punctuation, articles and extra whitespace."""
parts = [
_white_space_fix(_remove_articles(_normalize_number(_remove_punc(_lower(token)))))
for token in _tokenize(text)
]
parts = [part for part in parts if part.strip()]
normalized = " ".join(parts).strip()
return normalized
def _is_number(text: str) -> bool:
try:
float(text)
return True
except ValueError:
return False
def _is_word_number(text: str) -> bool:
try:
word_to_num(text)
return True
except ValueError:
return False
def _normalize_number(text: str) -> str:
if _is_number(text):
return str(float(text))
#TODO: this is not included in the original drop evaluation script, we need to have our own in the end anyways.
elif _is_word_number(text):
return str(float(word_to_num(text)))
else:
return text
def _answer_to_bags(
answer: Union[str, List[str], Tuple[str, ...]]
) -> Tuple[List[str], List[Set[str]]]:
if isinstance(answer, (list, tuple)):
raw_spans = answer
else:
raw_spans = [answer]
normalized_spans: List[str] = []
token_bags = []
for raw_span in raw_spans:
normalized_span = _normalize_answer(raw_span)
normalized_spans.append(normalized_span)
token_bags.append(set(normalized_span.split()))
return normalized_spans, token_bags
def _align_bags(predicted: List[Set[str]], gold: List[Set[str]]) -> List[float]:
"""
Takes gold and predicted answer sets and first finds the optimal 1-1 alignment
between them and gets maximum metric values over all the answers.
"""
scores = np.zeros([len(gold), len(predicted)])
for gold_index, gold_item in enumerate(gold):
for pred_index, pred_item in enumerate(predicted):
if _match_numbers_if_present(gold_item, pred_item):
scores[gold_index, pred_index] = _compute_f1(pred_item, gold_item)
row_ind, col_ind = linear_sum_assignment(-scores)
max_scores = np.zeros([max(len(gold), len(predicted))])
for row, column in zip(row_ind, col_ind):
max_scores[row] = max(max_scores[row], scores[row, column])
return max_scores
def _compute_f1(predicted_bag: Set[str], gold_bag: Set[str]) -> float:
intersection = len(gold_bag.intersection(predicted_bag))
if not predicted_bag:
precision = 1.0
else:
precision = intersection / float(len(predicted_bag))
if not gold_bag:
recall = 1.0
else:
recall = intersection / float(len(gold_bag))
f1 = (
(2 * precision * recall) / (precision + recall)
if not (precision == 0.0 and recall == 0.0)
else 0.0
)
return f1
def _match_numbers_if_present(gold_bag: Set[str], predicted_bag: Set[str]) -> bool:
gold_numbers = set()
predicted_numbers = set()
for word in gold_bag:
if _is_number(word):
gold_numbers.add(word)
for word in predicted_bag:
if _is_number(word):
predicted_numbers.add(word)
if (not gold_numbers) or gold_numbers.intersection(predicted_numbers):
return True
return False
def acc(predicted, gold):
predicted_bags = _answer_to_bags(predicted)
gold_bags = _answer_to_bags(gold)
if set(predicted_bags[0]) == set(gold_bags[0]) and len(predicted_bags[0]) == len(gold_bags[0]):
return 1.0
else:
return 0.0
def f1(predicted, gold):
predicted_bags = _answer_to_bags(predicted)
gold_bags = _answer_to_bags(gold)
f1_per_bag = _align_bags(predicted_bags[1], gold_bags[1])
f1 = np.mean(f1_per_bag)
f1 = round(f1, 2)
return f1
def metric_max_over_ground_truths(metric_fn, prediction, gold_answers):
scores_for_ground_truths = []
for gold_answer in gold_answers:
score = metric_fn(prediction, gold_answer)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def evaluate_predictions(predictions, gold_answers, example_types=None):
"""To support multiple gold annotations, `gold_answers` should be a list,
with each item (either a string or a list) corresponding to one valid reference answer."""
instance_eval_results = {}
instance_eval_results_by_types = {}
eval_funcs = {
"acc": acc,
"f1": f1
}
for qas_id in gold_answers:
ref_answers = gold_answers[qas_id]
if qas_id not in predictions:
print(f"Missing prediction for question {qas_id}, and all scores for this question are set to zero")
instance_eval_results[qas_id] = {
metric: 0.0 for metric in eval_funcs.keys()
}
else:
pred_answer = predictions[qas_id]
instance_eval_results[qas_id] = {
metric: metric_max_over_ground_truths(
func, pred_answer, ref_answers
) for metric, func in eval_funcs.items()
}
if example_types is not None:
example_type = example_types[qas_id]
if example_type not in instance_eval_results_by_types:
instance_eval_results_by_types[example_type] = {}
instance_eval_results_by_types[example_type][qas_id] = instance_eval_results[qas_id]
eval_scores = {metric: np.mean([result[metric] for result in instance_eval_results.values()])
for metric in eval_funcs.keys()}
if example_types is not None:
eval_scores_by_types = {}
for example_type, type_instance_eval_results in instance_eval_results_by_types.items():
eval_scores_by_types[example_type] = {
metric: np.mean([result[metric] for result in type_instance_eval_results.values()]) for metric in eval_funcs.keys()
}
return eval_scores, instance_eval_results, eval_scores_by_types
else:
return eval_scores, instance_eval_results
def evaluate_prediction_file(prediction_path, gold_path):
predicted_answers = json.load(open(prediction_path, encoding="utf-8"))
examples = read_jsonl(gold_path)
gold_answers, answer_modalities, hop_types, question_types = {}, {}, {}, {}
for example in examples:
qid = example["qid"]
# Currently we only have one ground truth answer.
# Even if there are multiple entries in example["answers"], the whole list should be regarded as one ref answer.
# However, our script supports evaluation with multiple ref answers.
# So, we will use an outer bracket here to pretend we have a list of ref answers.
gold_answer = [str(item["answer"]) for item in example["answers"]]
gold_answers[qid] = [gold_answer]
answer_modality = set([item["modality"] for item in example["answers"]])
assert len(answer_modality) == 1
answer_modalities[qid] = answer_modality.pop()
question_types[qid] = example["metadata"]["type"]
hop_types[qid] = "Multi-hop" if example["metadata"]["type"] in MULTI_HOP_QUESTION_TYPES else "Single-hop"
eval_scores, instance_eval_results = evaluate_predictions(predicted_answers, gold_answers)
print("\n\nOverall result with different metrics: ")
for metric, value in eval_scores.items():
print(f"{metric}: {value}")
modality_counts = Counter(answer_modalities.values())
_, _, eval_scores_by_modalities = \
evaluate_predictions(predicted_answers, gold_answers, answer_modalities)
print("\n\nEval results for different modalities:")
for answer_modality in sorted(eval_scores_by_modalities.keys()):
result = eval_scores_by_modalities[answer_modality]
print(f"{answer_modality}")
print(f"# of examples: {modality_counts[answer_modality]}")
for metric, value in result.items():
print(f"{metric}: {value}")
hop_type_counts = Counter(hop_types.values())
_, _, eval_scores_by_hop_types = evaluate_predictions(predicted_answers, gold_answers, hop_types)
print("\n\nType\tCount\tEM\tF1")
for hop_type in sorted(eval_scores_by_hop_types.keys()):
result = eval_scores_by_hop_types[hop_type]
print(f"{hop_type}\t{hop_type_counts[hop_type]}\t{result['acc']}\t{result['f1']}")
question_type_counts = Counter(question_types.values())
_, _, eval_scores_by_qtypes = evaluate_predictions(predicted_answers, gold_answers, question_types)
print("\n\nType\tCount\tEM\tF1")
for question_type in sorted(eval_scores_by_qtypes.keys()):
result = eval_scores_by_qtypes[question_type]
print(f"{question_type}\t{question_type_counts[question_type]}\t{result['acc']}\t{result['f1']}")
return eval_scores
class EvaluateTool(object):
def __init__(self, args):
self.args = args
def evaluate(self, preds, golds, section):
summary = {}
gold_answers, predicted_answers = {}, {}
for pred, gold in zip(preds, golds):
qid = gold["id"]
gold_answer = [item.strip() for item in gold["answer_text"].split("|")]
gold_answers[qid] = [gold_answer]
predicted_answers[qid] = [item.strip() for item in pred.split("|")]
eval_scores, instance_eval_results = evaluate_predictions(predicted_answers, gold_answers)
for metric, value in eval_scores.items():
summary[metric] = value
return summary