BP-GWAS-Prioritise / shap_plots.py
hlnicholls's picture
Update shap_plots.py
958afc7
raw
history blame
31.7 kB
import warnings
import iml
import numpy as np
from iml import Instance, Model
from iml.datatypes import DenseData
from iml.explanations import AdditiveExplanation
from iml.links import IdentityLink
from scipy.stats import gaussian_kde
import matplotlib
try:
import matplotlib.pyplot as pl
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.ticker import MaxNLocator
cdict1 = {
'red': ((0.0, 0.11764705882352941, 0.11764705882352941),
(1.0, 0.9607843137254902, 0.9607843137254902)),
'green': ((0.0, 0.5333333333333333, 0.5333333333333333),
(1.0, 0.15294117647058825, 0.15294117647058825)),
'blue': ((0.0, 0.8980392156862745, 0.8980392156862745),
(1.0, 0.3411764705882353, 0.3411764705882353)),
'alpha': ((0.0, 1, 1),
(0.5, 0.3, 0.3),
(1.0, 1, 1))
} # #1E88E5 -> #ff0052
red_blue = LinearSegmentedColormap('RedBlue', cdict1)
cdict1 = {
'red': ((0.0, 0.11764705882352941, 0.11764705882352941),
(1.0, 0.9607843137254902, 0.9607843137254902)),
'green': ((0.0, 0.5333333333333333, 0.5333333333333333),
(1.0, 0.15294117647058825, 0.15294117647058825)),
'blue': ((0.0, 0.8980392156862745, 0.8980392156862745),
(1.0, 0.3411764705882353, 0.3411764705882353)),
'alpha': ((0.0, 1, 1),
(0.5, 1, 1),
(1.0, 1, 1))
} # #1E88E5 -> #ff0052
red_blue_solid = LinearSegmentedColormap('RedBlue', cdict1)
except ImportError:
pass
labels = {
'MAIN_EFFECT': "SHAP main effect value for\n%s",
'INTERACTION_VALUE': "SHAP interaction value",
'INTERACTION_EFFECT': "SHAP interaction value for\n%s and %s",
'VALUE': "SHAP value (impact on model output)",
'VALUE_FOR': "SHAP value for\n%s",
'PLOT_FOR': "SHAP plot for %s",
'FEATURE': "Feature %s",
'FEATURE_VALUE': "Feature value",
'FEATURE_VALUE_LOW': "Low",
'FEATURE_VALUE_HIGH': "High",
'JOINT_VALUE': "Joint SHAP value"
}
def shap_summary_plot(shap_values, features=None, feature_names=None, max_display=None, plot_type="dot",
color=None, axis_color="#333333", title=None, alpha=1, show=True, sort=True,
color_bar=True, auto_size_plot=True, layered_violin_max_num_bins=20):
"""Create a SHAP summary plot, colored by feature values when they are provided.
Parameters
----------
shap_values : numpy.array
Matrix of SHAP values (# samples x # features)
features : numpy.array or pandas.DataFrame or list
Matrix of feature values (# samples x # features) or a feature_names list as shorthand
feature_names : list
Names of the features (length # features)
max_display : int
How many top features to include in the plot (default is 20, or 7 for interaction plots)
plot_type : "dot" (default) or "violin"
What type of summary plot to produce
"""
assert len(shap_values.shape) != 1, "Summary plots need a matrix of shap_values, not a vector."
# default color:
if color is None:
color = "coolwarm" if plot_type == 'layered_violin' else "#ff0052"
# convert from a DataFrame or other types
if str(type(features)) == "<class 'pandas.core.frame.DataFrame'>":
if feature_names is None:
feature_names = features.columns
features = features.values
elif str(type(features)) == "<class 'list'>":
if feature_names is None:
feature_names = features
features = None
elif (features is not None) and len(features.shape) == 1 and feature_names is None:
feature_names = features
features = None
if feature_names is None:
feature_names = [labels['FEATURE'] % str(i) for i in range(shap_values.shape[1] - 1)]
mpl_fig = pl.figure(figsize=(1.5 * max_display + 1, 1 * max_display + 1))
# plotting SHAP interaction values
if len(shap_values.shape) == 3:
if max_display is None:
max_display = 7
else:
max_display = min(len(feature_names), max_display)
sort_inds = np.argsort(-np.abs(shap_values[:, :-1, :-1].sum(1)).sum(0))
# get plotting limits
delta = 1.0 / (shap_values.shape[1] ** 2)
slow = np.nanpercentile(shap_values, delta)
shigh = np.nanpercentile(shap_values, 100 - delta)
v = max(abs(slow), abs(shigh))
slow = -0.2
shigh = 0.2
# mpl_fig = pl.figure(figsize=(1.5 * max_display + 1, 1 * max_display + 1))
ax = mpl_fig.subplot(1, max_display, 1)
proj_shap_values = shap_values[:, sort_inds[0], np.hstack((sort_inds, len(sort_inds)))]
proj_shap_values[:, 1:] *= 2 # because off diag effects are split in half
shap_summary_plot(
proj_shap_values, features[:, sort_inds],
feature_names=feature_names[sort_inds],
sort=False, show=False, color_bar=False,
auto_size_plot=False,
max_display=max_display
)
pl.xlim((slow, shigh))
pl.xlabel("")
title_length_limit = 11
pl.title(shorten_text(feature_names[sort_inds[0]], title_length_limit))
for i in range(1, max_display):
ind = sort_inds[i]
pl.subplot(1, max_display, i + 1)
proj_shap_values = shap_values[:, ind, np.hstack((sort_inds, len(sort_inds)))]
proj_shap_values *= 2
proj_shap_values[:, i] /= 2 # because only off diag effects are split in half
shap_summary_plot(
proj_shap_values, features[:, sort_inds],
sort=False,
feature_names=df_shap.columns, #["" for i in range(features.shape[1])],
show=False,
color_bar=False,
auto_size_plot=False,
max_display=max_display
)
pl.xlim((slow, shigh))
pl.xlabel("")
if i == max_display // 2:
pl.xlabel(labels['INTERACTION_VALUE'])
pl.title(shorten_text(feature_names[ind], title_length_limit))
pl.tight_layout(pad=0, w_pad=0, h_pad=0.0)
pl.subplots_adjust(hspace=0, wspace=0.1)
# if show:
# # pl.show()
return mpl_fig
if max_display is None:
max_display = 20
if sort:
# order features by the sum of their effect magnitudes
feature_order = np.argsort(np.sum(np.abs(shap_values), axis=0)[:-1])
feature_order = feature_order[-min(max_display, len(feature_order)):]
else:
feature_order = np.flip(np.arange(min(max_display, shap_values.shape[1] - 1)), 0)
row_height = 0.4
if auto_size_plot:
pl.gcf().set_size_inches(8, len(feature_order) * row_height + 1.5)
pl.axvline(x=0, color="#999999", zorder=-1)
if plot_type == "dot":
for pos, i in enumerate(feature_order):
pl.axhline(y=pos, color="#cccccc", lw=0.5, dashes=(1, 5), zorder=-1)
shaps = shap_values[:, i]
values = None if features is None else features[:, i]
inds = np.arange(len(shaps))
np.random.shuffle(inds)
if values is not None:
values = values[inds]
shaps = shaps[inds]
colored_feature = True
try:
values = np.array(values, dtype=np.float64) # make sure this can be numeric
except:
colored_feature = False
N = len(shaps)
# hspacing = (np.max(shaps) - np.min(shaps)) / 200
# curr_bin = []
nbins = 100
quant = np.round(nbins * (shaps - np.min(shaps)) / (np.max(shaps) - np.min(shaps) + 1e-8))
inds = np.argsort(quant + np.random.randn(N) * 1e-6)
layer = 0
last_bin = -1
ys = np.zeros(N)
for ind in inds:
if quant[ind] != last_bin:
layer = 0
ys[ind] = np.ceil(layer / 2) * ((layer % 2) * 2 - 1)
layer += 1
last_bin = quant[ind]
ys *= 0.9 * (row_height / np.max(ys + 1))
if features is not None and colored_feature:
# trim the color range, but prevent the color range from collapsing
vmin = np.nanpercentile(values, 5)
vmax = np.nanpercentile(values, 95)
if vmin == vmax:
vmin = np.nanpercentile(values, 1)
vmax = np.nanpercentile(values, 99)
if vmin == vmax:
vmin = np.min(values)
vmax = np.max(values)
assert features.shape[0] == len(shaps), "Feature and SHAP matrices must have the same number of rows!"
nan_mask = np.isnan(values)
pl.scatter(shaps[nan_mask], pos + ys[nan_mask], color="#777777", vmin=vmin,
vmax=vmax, s=16, alpha=alpha, linewidth=0,
zorder=3, rasterized=len(shaps) > 500)
pl.scatter(shaps[np.invert(nan_mask)], pos + ys[np.invert(nan_mask)],
cmap=red_blue, vmin=vmin, vmax=vmax, s=16,
c=values[np.invert(nan_mask)], alpha=alpha, linewidth=0,
zorder=3, rasterized=len(shaps) > 500)
else:
pl.scatter(shaps, pos + ys, s=16, alpha=alpha, linewidth=0, zorder=3,
color=color if colored_feature else "#777777", rasterized=len(shaps) > 500)
elif plot_type == "violin":
for pos, i in enumerate(feature_order):
pl.axhline(y=pos, color="#cccccc", lw=0.5, dashes=(1, 5), zorder=-1)
if features is not None:
global_low = np.nanpercentile(shap_values[:, :len(feature_names)].flatten(), 1)
global_high = np.nanpercentile(shap_values[:, :len(feature_names)].flatten(), 99)
for pos, i in enumerate(feature_order):
shaps = shap_values[:, i]
shap_min, shap_max = np.min(shaps), np.max(shaps)
rng = shap_max - shap_min
xs = np.linspace(np.min(shaps) - rng * 0.2, np.max(shaps) + rng * 0.2, 100)
if np.std(shaps) < (global_high - global_low) / 100:
ds = gaussian_kde(shaps + np.random.randn(len(shaps)) * (global_high - global_low) / 100)(xs)
else:
ds = gaussian_kde(shaps)(xs)
ds /= np.max(ds) * 3
values = features[:, i]
window_size = max(10, len(values) // 20)
smooth_values = np.zeros(len(xs) - 1)
sort_inds = np.argsort(shaps)
trailing_pos = 0
leading_pos = 0
running_sum = 0
back_fill = 0
for j in range(len(xs) - 1):
while leading_pos < len(shaps) and xs[j] >= shaps[sort_inds[leading_pos]]:
running_sum += values[sort_inds[leading_pos]]
leading_pos += 1
if leading_pos - trailing_pos > 20:
running_sum -= values[sort_inds[trailing_pos]]
trailing_pos += 1
if leading_pos - trailing_pos > 0:
smooth_values[j] = running_sum / (leading_pos - trailing_pos)
for k in range(back_fill):
smooth_values[j - k - 1] = smooth_values[j]
else:
back_fill += 1
vmin = np.nanpercentile(values, 5)
vmax = np.nanpercentile(values, 95)
if vmin == vmax:
vmin = np.nanpercentile(values, 1)
vmax = np.nanpercentile(values, 99)
if vmin == vmax:
vmin = np.min(values)
vmax = np.max(values)
pl.scatter(shaps, np.ones(shap_values.shape[0]) * pos, s=9, cmap=red_blue_solid, vmin=vmin, vmax=vmax,
c=values, alpha=alpha, linewidth=0, zorder=1)
# smooth_values -= nxp.nanpercentile(smooth_values, 5)
# smooth_values /= np.nanpercentile(smooth_values, 95)
smooth_values -= vmin
if vmax - vmin > 0:
smooth_values /= vmax - vmin
for i in range(len(xs) - 1):
if ds[i] > 0.05 or ds[i + 1] > 0.05:
pl.fill_between([xs[i], xs[i + 1]], [pos + ds[i], pos + ds[i + 1]],
[pos - ds[i], pos - ds[i + 1]], color=red_blue_solid(smooth_values[i]),
zorder=2)
else:
parts = pl.violinplot(shap_values[:, feature_order], range(len(feature_order)), points=200, vert=False,
widths=0.7,
showmeans=False, showextrema=False, showmedians=False)
for pc in parts['bodies']:
pc.set_facecolor(color)
pc.set_edgecolor('none')
pc.set_alpha(alpha)
elif plot_type == "layered_violin": # courtesy of @kodonnell
num_x_points = 200
bins = np.linspace(0, features.shape[0], layered_violin_max_num_bins + 1).round(0).astype(
'int') # the indices of the feature data corresponding to each bin
shap_min, shap_max = np.min(shap_values[:, :-1]), np.max(shap_values[:, :-1])
x_points = np.linspace(shap_min, shap_max, num_x_points)
# loop through each feature and plot:
for pos, ind in enumerate(feature_order):
# decide how to handle: if #unique < layered_violin_max_num_bins then split by unique value, otherwise use bins/percentiles.
# to keep simpler code, in the case of uniques, we just adjust the bins to align with the unique counts.
feature = features[:, ind]
unique, counts = np.unique(feature, return_counts=True)
if unique.shape[0] <= layered_violin_max_num_bins:
order = np.argsort(unique)
thesebins = np.cumsum(counts[order])
thesebins = np.insert(thesebins, 0, 0)
else:
thesebins = bins
nbins = thesebins.shape[0] - 1
# order the feature data so we can apply percentiling
order = np.argsort(feature)
# x axis is located at y0 = pos, with pos being there for offset
y0 = np.ones(num_x_points) * pos
# calculate kdes:
ys = np.zeros((nbins, num_x_points))
for i in range(nbins):
# get shap values in this bin:
shaps = shap_values[order[thesebins[i]:thesebins[i + 1]], ind]
# if there's only one element, then we can't
if shaps.shape[0] == 1:
warnings.warn(
"not enough data in bin #%d for feature %s, so it'll be ignored. Try increasing the number of records to plot."
% (i, feature_names[ind]))
# to ignore it, just set it to the previous y-values (so the area between them will be zero). Not ys is already 0, so there's
# nothing to do if i == 0
if i > 0:
ys[i, :] = ys[i - 1, :]
continue
# save kde of them: note that we add a tiny bit of gaussian noise to avoid singular matrix errors
ys[i, :] = gaussian_kde(shaps + np.random.normal(loc=0, scale=0.001, size=shaps.shape[0]))(x_points)
# scale it up so that the 'size' of each y represents the size of the bin. For continuous data this will
# do nothing, but when we've gone with the unqique option, this will matter - e.g. if 99% are male and 1%
# female, we want the 1% to appear a lot smaller.
size = thesebins[i + 1] - thesebins[i]
bin_size_if_even = features.shape[0] / nbins
relative_bin_size = size / bin_size_if_even
ys[i, :] *= relative_bin_size
# now plot 'em. We don't plot the individual strips, as this can leave whitespace between them.
# instead, we plot the full kde, then remove outer strip and plot over it, etc., to ensure no
# whitespace
ys = np.cumsum(ys, axis=0)
width = 0.8
scale = ys.max() * 2 / width # 2 is here as we plot both sides of x axis
for i in range(nbins - 1, -1, -1):
y = ys[i, :] / scale
c = pl.get_cmap(color)(i / (
nbins - 1)) if color in pl.cm.datad else color # if color is a cmap, use it, otherwise use a color
pl.fill_between(x_points, pos - y, pos + y, facecolor=c)
pl.xlim(shap_min, shap_max)
# draw the color bar
if color_bar and features is not None and (plot_type != "layered_violin" or color in pl.cm.datad):
import matplotlib.cm as cm
m = cm.ScalarMappable(cmap=red_blue_solid if plot_type != "layered_violin" else pl.get_cmap(color))
m.set_array([0, 1])
cb = pl.colorbar(m, ticks=[0, 1], aspect=1000)
cb.set_ticklabels([labels['FEATURE_VALUE_LOW'], labels['FEATURE_VALUE_HIGH']])
cb.set_label(labels['FEATURE_VALUE'], size=12, labelpad=0)
cb.ax.tick_params(labelsize=11, length=0)
cb.set_alpha(1)
cb.outline.set_visible(False)
bbox = cb.ax.get_window_extent().transformed(pl.gcf().dpi_scale_trans.inverted())
cb.ax.set_aspect((bbox.height - 0.9) * 20)
# cb.draw_all()
pl.gca().xaxis.set_ticks_position('bottom')
pl.gca().yaxis.set_ticks_position('none')
pl.gca().spines['right'].set_visible(False)
pl.gca().spines['top'].set_visible(False)
pl.gca().spines['left'].set_visible(False)
pl.gca().tick_params(color=axis_color, labelcolor=axis_color)
pl.yticks(range(len(feature_order)), [feature_names[i] for i in feature_order], fontsize=13)
pl.gca().tick_params('y', length=20, width=0.5, which='major')
pl.gca().tick_params('x', labelsize=11)
pl.ylim(-1, len(feature_order))
pl.xlabel(labels['VALUE'], fontsize=13)
pl.tight_layout()
# if show:
# pl.show()
return mpl_fig
def approx_interactions(index, shap_values, X):
""" Order other features by how much interaction they seem to have with the feature at the given index.
This just bins the SHAP values for a feature along that feature's value. For true Shapley interaction
index values for SHAP see the interaction_contribs option implemented in XGBoost.
"""
if X.shape[0] > 10000:
a = np.arange(X.shape[0])
np.random.shuffle(a)
inds = a[:10000]
else:
inds = np.arange(X.shape[0])
x = X[inds, index]
srt = np.argsort(x)
shap_ref = shap_values[inds, index]
shap_ref = shap_ref[srt]
inc = max(min(int(len(x) / 10.0), 50), 1)
interactions = []
for i in range(X.shape[1]):
val_other = X[inds, i][srt].astype(np.float)
v = 0.0
if not (i == index or np.sum(np.abs(val_other)) < 1e-8):
for j in range(0, len(x), inc):
if np.std(val_other[j:j + inc]) > 0 and np.std(shap_ref[j:j + inc]) > 0:
v += abs(np.corrcoef(shap_ref[j:j + inc], val_other[j:j + inc])[0, 1])
interactions.append(v)
return np.argsort(-np.abs(interactions))
def shap_dependence_plot(ind, shap_values, features, feature_names=None, display_features=None,
interaction_index="auto", color="#1E88E5", axis_color="#333333",
dot_size=16, alpha=1, title=None, show=True):
"""
Create a SHAP dependence plot, colored by an interaction feature.
Parameters
----------
ind : int
Index of the feature to plot.
shap_values : numpy.array
Matrix of SHAP values (# samples x # features)
features : numpy.array or pandas.DataFrame
Matrix of feature values (# samples x # features)
feature_names : list
Names of the features (length # features)
display_features : numpy.array or pandas.DataFrame
Matrix of feature values for visual display (such as strings instead of coded values)
interaction_index : "auto", None, or int
The index of the feature used to color the plot.
"""
# convert from DataFrames if we got any
if str(type(features)).endswith("'pandas.core.frame.DataFrame'>"):
if feature_names is None:
feature_names = features.columns
features = features.values
if str(type(display_features)).endswith("'pandas.core.frame.DataFrame'>"):
if feature_names is None:
feature_names = display_features.columns
display_features = display_features.values
elif display_features is None:
display_features = features
if feature_names is None:
feature_names = [labels['FEATURE'] % str(i) for i in range(shap_values.shape[1] - 1)]
# allow vectors to be passed
if len(shap_values.shape) == 1:
shap_values = np.reshape(shap_values, len(shap_values), 1)
if len(features.shape) == 1:
features = np.reshape(features, len(features), 1)
def convert_name(ind):
if type(ind) == str:
nzinds = np.where(feature_names == ind)[0]
if len(nzinds) == 0:
print("Could not find feature named: " + ind)
return None
else:
return nzinds[0]
else:
return ind
ind = convert_name(ind)
mpl_fig = pl.gcf()
ax = mpl_fig.gca()
# plotting SHAP interaction values
if len(shap_values.shape) == 3 and len(ind) == 2:
ind1 = convert_name(ind[0])
ind2 = convert_name(ind[1])
if ind1 == ind2:
proj_shap_values = shap_values[:, ind2, :]
else:
proj_shap_values = shap_values[:, ind2, :] * 2 # off-diag values are split in half
# TODO: remove recursion; generally the functions should be shorter for more maintainable code
return shap_dependence_plot(
ind1, proj_shap_values, features, feature_names=feature_names,
interaction_index=ind2, display_features=display_features, show=False
)
assert shap_values.shape[0] == features.shape[0], \
"'shap_values' and 'features' values must have the same number of rows!"
assert shap_values.shape[1] == features.shape[1], \
"'shap_values' must have the same number of columns as 'features'!"
# get both the raw and display feature values
xv = features[:, ind]
xd = display_features[:, ind]
s = shap_values[:, ind]
if type(xd[0]) == str:
name_map = {}
for i in range(len(xv)):
name_map[xd[i]] = xv[i]
xnames = list(name_map.keys())
# allow a single feature name to be passed alone
if type(feature_names) == str:
feature_names = [feature_names]
name = feature_names[ind]
# guess what other feature as the stongest interaction with the plotted feature
if interaction_index == "auto":
interaction_index = approx_interactions(ind, shap_values, features)[0]
interaction_index = convert_name(interaction_index)
categorical_interaction = False
# get both the raw and display color values
if interaction_index is not None:
cv = features[:, interaction_index]
cd = display_features[:, interaction_index]
clow = np.nanpercentile(features[:, interaction_index].astype(np.float), 5)
chigh = np.nanpercentile(features[:, interaction_index].astype(np.float), 95)
if type(cd[0]) == str:
cname_map = {}
for i in range(len(cv)):
cname_map[cd[i]] = cv[i]
cnames = list(cname_map.keys())
categorical_interaction = True
elif clow % 1 == 0 and chigh % 1 == 0 and len(set(features[:, interaction_index])) < 50:
categorical_interaction = True
# discritize colors for categorical features
color_norm = None
if categorical_interaction and clow != chigh:
bounds = np.linspace(clow, chigh, chigh - clow + 2)
color_norm = matplotlib.colors.BoundaryNorm(bounds, red_blue.N)
# the actual scatter plot, TODO: adapt the dot_size to the number of data points?
if interaction_index is not None:
pl.scatter(xv, s, s=dot_size, linewidth=0, c=features[:, interaction_index], cmap=red_blue,
alpha=alpha, vmin=clow, vmax=chigh, norm=color_norm, rasterized=len(xv) > 500)
else:
pl.scatter(xv, s, s=dot_size, linewidth=0, color="#1E88E5",
alpha=alpha, rasterized=len(xv) > 500)
if interaction_index != ind and interaction_index is not None:
# draw the color bar
if type(cd[0]) == str:
tick_positions = [cname_map[n] for n in cnames]
if len(tick_positions) == 2:
tick_positions[0] -= 0.25
tick_positions[1] += 0.25
cb = pl.colorbar(ticks=tick_positions)
cb.set_ticklabels(cnames)
else:
cb = pl.colorbar()
cb.set_label(feature_names[interaction_index], size=13)
cb.ax.tick_params(labelsize=11)
if categorical_interaction:
cb.ax.tick_params(length=0)
cb.set_alpha(1)
cb.outline.set_visible(False)
bbox = cb.ax.get_window_extent().transformed(pl.gcf().dpi_scale_trans.inverted())
cb.ax.set_aspect((bbox.height - 0.7) * 20)
# make the plot more readable
if interaction_index != ind:
pl.gcf().set_size_inches(7.5, 5)
else:
pl.gcf().set_size_inches(6, 5)
# pl.xlabel(name, color=axis_color, fontsize=13)
# pl.ylabel(labels['VALUE_FOR'] % name, color=axis_color, fontsize=13)
if title is not None:
pl.title(title, color=axis_color, fontsize=13)
pl.gca().xaxis.set_ticks_position('bottom')
pl.gca().yaxis.set_ticks_position('left')
pl.gca().spines['right'].set_visible(False)
pl.gca().spines['top'].set_visible(False)
pl.gca().tick_params(color=axis_color, labelcolor=axis_color, labelsize=11)
for spine in pl.gca().spines.values():
spine.set_edgecolor(axis_color)
if type(xd[0]) == str:
pl.xticks([name_map[n] for n in xnames], xnames, rotation='vertical', fontsize=11)
# if show:
# pl.show()
if ind1 == ind2:
pl.ylabel(labels['MAIN_EFFECT'] % feature_names[ind1])
else:
pl.ylabel(labels['INTERACTION_EFFECT'] % (feature_names[ind1], feature_names[ind2]))
return mpl_fig, interaction_index
# # if show:
# # pl.show()
# return
# return mpl_fig
# assert shap_values.shape[0] == features.shape[0], "'shap_values' and 'features' values must have the same number of rows!"
# assert shap_values.shape[1] == features.shape[1] + 1, "'shap_values' must have one more column than 'features'!"
# get both the raw and display feature values
xv = features[:, ind]
xd = display_features[:, ind]
s = shap_values[:, ind]
if type(xd[0]) == str:
name_map = {}
for i in range(len(xv)):
name_map[xd[i]] = xv[i]
xnames = list(name_map.keys())
# allow a single feature name to be passed alone
if type(feature_names) == str:
feature_names = [feature_names]
name = feature_names[ind]
# guess what other feature as the stongest interaction with the plotted feature
if interaction_index == "auto":
interaction_index = approx_interactions(ind, shap_values, features)[0]
interaction_index = convert_name(interaction_index)
categorical_interaction = False
# get both the raw and display color values
if interaction_index is not None:
cv = features[:, interaction_index]
cd = display_features[:, interaction_index]
clow = np.nanpercentile(features[:, interaction_index].astype(np.float), 5)
chigh = np.nanpercentile(features[:, interaction_index].astype(np.float), 95)
if type(cd[0]) == str:
cname_map = {}
for i in range(len(cv)):
cname_map[cd[i]] = cv[i]
cnames = list(cname_map.keys())
categorical_interaction = True
elif clow % 1 == 0 and chigh % 1 == 0 and len(set(features[:, interaction_index])) < 50:
categorical_interaction = True
# discritize colors for categorical features
color_norm = None
if categorical_interaction and clow != chigh:
bounds = np.linspace(clow, chigh, chigh - clow + 2)
color_norm = matplotlib.colors.BoundaryNorm(bounds, red_blue.N)
# the actual scatter plot, TODO: adapt the dot_size to the number of data points?
if interaction_index is not None:
pl.scatter(xv, s, s=dot_size, linewidth=0, c=features[:, interaction_index], cmap=red_blue,
alpha=alpha, vmin=clow, vmax=chigh, norm=color_norm, rasterized=len(xv) > 500)
else:
pl.scatter(xv, s, s=dot_size, linewidth=0, color="#1E88E5",
alpha=alpha, rasterized=len(xv) > 500)
if interaction_index != ind and interaction_index is not None:
# draw the color bar
if type(cd[0]) == str:
tick_positions = [cname_map[n] for n in cnames]
if len(tick_positions) == 2:
tick_positions[0] -= 0.25
tick_positions[1] += 0.25
cb = pl.colorbar(ticks=tick_positions)
cb.set_ticklabels(cnames)
else:
cb = pl.colorbar()
cb.set_label(feature_names[interaction_index], size=13)
cb.ax.tick_params(labelsize=11)
if categorical_interaction:
cb.ax.tick_params(length=0)
cb.set_alpha(1)
cb.outline.set_visible(False)
bbox = cb.ax.get_window_extent().transformed(pl.gcf().dpi_scale_trans.inverted())
cb.ax.set_aspect((bbox.height - 0.7) * 20)
# make the plot more readable
if interaction_index != ind:
pl.gcf().set_size_inches(7.5, 5)
else:
pl.gcf().set_size_inches(6, 5)
pl.xlabel(name, color=axis_color, fontsize=13)
pl.ylabel(labels['VALUE_FOR'] % name, color=axis_color, fontsize=13)
if title is not None:
pl.title(title, color=axis_color, fontsize=13)
pl.gca().xaxis.set_ticks_position('bottom')
pl.gca().yaxis.set_ticks_position('left')
pl.gca().spines['right'].set_visible(False)
pl.gca().spines['top'].set_visible(False)
pl.gca().tick_params(color=axis_color, labelcolor=axis_color, labelsize=11)
for spine in pl.gca().spines.values():
spine.set_edgecolor(axis_color)
if type(xd[0]) == str:
pl.xticks([name_map[n] for n in xnames], xnames, rotation='vertical', fontsize=11)
# if show:
# pl.show()
return mpl_fig, interaction_index