Spaces:
Sleeping
Sleeping
Commit
·
2ab2dc2
1
Parent(s):
33c190e
Update app.py
Browse files
app.py
CHANGED
@@ -7,17 +7,14 @@ import xgboost
|
|
7 |
import shap
|
8 |
st.set_option('deprecation.showPyplotGlobalUse', False)
|
9 |
|
10 |
-
|
11 |
-
hide_table_row_index = """
|
12 |
<style>
|
13 |
-
|
14 |
-
|
15 |
</style>
|
16 |
"""
|
17 |
|
18 |
-
|
19 |
-
st.markdown(hide_table_row_index, unsafe_allow_html=True)
|
20 |
-
|
21 |
seed=42
|
22 |
|
23 |
annotations = pd.read_csv("annotations_dataset.csv")
|
@@ -109,18 +106,18 @@ else:
|
|
109 |
|
110 |
input_gene = st.text_input("Input individual HGNC gene:")
|
111 |
df2 = df_total[df_total.index == input_gene]
|
112 |
-
df2_shap = df_total[df_total.index == input_gene]
|
113 |
df2['Gene'] = df2.index
|
114 |
st.dataframe(df2)
|
115 |
-
df2.drop(columns='XGB_Score', inplace=True)
|
116 |
|
117 |
if input_gene:
|
|
|
|
|
118 |
shap_values = explainer.shap_values(df2_shap)
|
119 |
shap.getjs()
|
120 |
force_plot = shap.force_plot(
|
121 |
explainer.expected_value,
|
122 |
shap_values,
|
123 |
-
df2_shap
|
124 |
matplotlib = True,show=False)
|
125 |
st.pyplot(fig=force_plot)
|
126 |
else:
|
@@ -130,5 +127,6 @@ st.markdown("""
|
|
130 |
Total Gene Prioritisation Results:
|
131 |
""")
|
132 |
|
133 |
-
|
|
|
134 |
st.dataframe(df_total)
|
|
|
7 |
import shap
|
8 |
st.set_option('deprecation.showPyplotGlobalUse', False)
|
9 |
|
10 |
+
hide_dataframe_row_index = """
|
|
|
11 |
<style>
|
12 |
+
.row_heading.level0 {display:none}
|
13 |
+
.blank {display:none}
|
14 |
</style>
|
15 |
"""
|
16 |
|
17 |
+
st.markdown(hide_dataframe_row_index, unsafe_allow_html=True)
|
|
|
|
|
18 |
seed=42
|
19 |
|
20 |
annotations = pd.read_csv("annotations_dataset.csv")
|
|
|
106 |
|
107 |
input_gene = st.text_input("Input individual HGNC gene:")
|
108 |
df2 = df_total[df_total.index == input_gene]
|
|
|
109 |
df2['Gene'] = df2.index
|
110 |
st.dataframe(df2)
|
|
|
111 |
|
112 |
if input_gene:
|
113 |
+
df2_shap = df_total[df_total.index == input_gene]
|
114 |
+
df2_shap.drop(columns='XGB_Score', inplace=True)
|
115 |
shap_values = explainer.shap_values(df2_shap)
|
116 |
shap.getjs()
|
117 |
force_plot = shap.force_plot(
|
118 |
explainer.expected_value,
|
119 |
shap_values,
|
120 |
+
df2_shap,
|
121 |
matplotlib = True,show=False)
|
122 |
st.pyplot(fig=force_plot)
|
123 |
else:
|
|
|
127 |
Total Gene Prioritisation Results:
|
128 |
""")
|
129 |
|
130 |
+
df_total_output = df_total
|
131 |
+
df_total_output['Gene'] = df_total_output.index
|
132 |
st.dataframe(df_total)
|