File size: 5,745 Bytes
f0ad9ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import pandas as pd
import numpy as np
import gradio as gr
from urllib.parse import quote

def style_dataframe(df):
    if len(df) == 0:
        return df

    highlight_cols = ["Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO"]
    styled = df.style

    def highlight_green(val):
        try:
            val_float = float(str(val).replace('%', '').replace(' kg', ''))
            return f'background: linear-gradient(90deg, rgba(46, 125, 50, 0.5) {val_float}%, rgba(46, 125, 50, 0.1) {val_float}%); color: white;'
        except:
            return 'background-color: #121212; color: white;'

    for col in highlight_cols:
        styled = styled.applymap(highlight_green, subset=[col])

    styled = styled.set_properties(
        subset=["Model"],
        **{'color': '#4da6ff'}
    )

    return styled

def create_leaderboard_data():
    models = [
        {"model_name": "meta-llama/llama-3-70b-instruct", "type": "open"},
        {"model_name": "mistralai/Mistral-7B-Instruct-v0.3", "type": "open"},
        {"model_name": "google/gemma-7b-it", "type": "open"},
        {"model_name": "Qwen/Qwen2-7B-Instruct", "type": "open"},
        {"model_name": "anthropic/claude-3-opus", "type": "closed"},
        {"model_name": "OpenAI/gpt-4o", "type": "closed"},
        {"model_name": "01-ai/Yi-1.5-34B-Chat", "type": "open"},
        {"model_name": "google/gemma-2b", "type": "open"},
        {"model_name": "microsoft/phi-3-mini-4k-instruct", "type": "open"},
        {"model_name": "microsoft/phi-3-mini-128k-instruct", "type": "open"},
        {"model_name": "stabilityai/stable-beluga-7b", "type": "open"},
        {"model_name": "togethercomputer/RedPajama-INCITE-7B-Instruct", "type": "open"},
        {"model_name": "databricks/dbrx-instruct", "type": "closed"},
        {"model_name": "mosaicml/mpt-7b-instruct", "type": "open"},
        {"model_name": "01-ai/Yi-1.5-9B-Chat", "type": "open"}
    ]

    np.random.seed(42)

    rows = []
    for i, model in enumerate(models, 1):
        model_name = model["model_name"]
        model_type = model["type"]

        emoji = "🟢" if model_type.lower() == "open" else "🔴"
        type_with_emoji = f"{emoji} {model_type.upper()}"

        if "/" in model_name:
            org, name = model_name.split("/", 1)
            model_link = f"[{model_name}](https://huggingface.co/{quote(model_name)})"
        else:
            model_link = f"[{model_name}](https://huggingface.co/models?search={quote(model_name)})"

        average = round(np.random.uniform(40, 90), 2)
        ifeval = round(np.random.uniform(30, 90), 2)
        bbhi = round(np.random.uniform(40, 85), 2)
        math = round(np.random.uniform(20, 80), 2)
        gpqa = round(np.random.uniform(10, 70), 2)
        mujb = round(np.random.uniform(10, 70), 2)
        mmlu = round(np.random.uniform(40, 85), 2)
        co2_cost = round(np.random.uniform(1, 100), 2)

        rows.append([
            i,
            type_with_emoji,
            model_link,
            f"{average}",
            f"{ifeval}",
            f"{bbhi}",
            f"{math}",
            f"{gpqa}",
            f"{mujb}",
            f"{mmlu}",
            f"{co2_cost} kg"
        ])

    rows.sort(key=lambda x: float(x[3]), reverse=True)

    for i, row in enumerate(rows, 1):
        row[0] = i

    df = pd.DataFrame(rows, columns=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"])
    return style_dataframe(df)

def get_filter_data():
    return {
        "For Edge Devices": 5,
        "For Consumers": 4,
        "Mid-range": 4,
        "For the GPU-rich": 3,
        "Only Official Providers": 8
    }

css = """
.html-container {
    text-align: center;
    display: flex;
    justify-content: center;
    width: 100%;
}

.dataframe-container {
    margin-top: 0.5rem;
    margin-bottom: 0.5rem;
}

.leaderboard-title {
    font-size: 1.5rem;
    font-weight: bold;
    margin-bottom: 0.25rem;
    color: #f0f0f0;
}

.leaderboard-subtitle {
    font-size: 0.9rem;
    margin-bottom: 1rem;
    color: #a0a0a0;
}

.filters-container {
    margin-bottom: 0.5rem;
}
"""

filter_data = get_filter_data()
filter_choices = [f"{key} · {value}" for key, value in filter_data.items()]

with gr.Blocks(css=css) as demo:
    gr.HTML("""
        <div style="display: flex; align-items: center; justify-content: center; margin-bottom: 10px;">
            <div class="leaderboard-title">Open LLM Leaderboard</div>
        </div>
        <div class="leaderboard-subtitle">Comparing Large Language Models in an open and reproducible way</div>
    """)

    with gr.Row():
        filters = gr.CheckboxGroup(
            label="Quick Filters",
            choices=filter_choices,
        )

    with gr.Row():
        status_text = gr.HTML("<div style='text-align: right; color: #888; font-size: 0.8rem;'>Last updated: June 25, 2024 at 10:30 AM</div>")

    leaderboard_df = create_leaderboard_data()
    leaderboard_table = gr.Dataframe(
        value=leaderboard_df,
        headers=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"],
        datatype=["number", "str", "markdown", "str", "str", "str", "str", "str", "str", "str", "str"],
        elem_id="leaderboard-table",
        interactive=False,
        max_height=600,
        show_search="search",
        show_copy_button=True,
        show_fullscreen_button=True,
        pinned_columns=2,
        column_widths=["5%", "7%", "35%", "7%", "7%", "7%", "7%", "7%", "7%", "7%", "6%"]
    )

    refresh_btn = gr.Button("Refresh Data")
    refresh_btn.click(fn=lambda: create_leaderboard_data(), outputs=leaderboard_table)

if __name__ == "__main__":
    demo.launch()