Hannah
initial
cce0ed9
raw
history blame
11 kB
import pandas as pd
import requests
from urllib.parse import quote
import subprocess
import os
import time
import sys
from datetime import datetime
import gradio as gr
def style_dataframe(df):
if len(df) == 0:
return df
# Define the columns to highlight based on the screenshot
highlight_cols = ["Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO"]
# Initialize the styler
styled = df.style
# Function to create gradient background based on value
def highlight_green(val):
try:
# Extract numeric value from string (remove % if present)
val_float = float(str(val).replace('%', '').replace(' kg', ''))
# Create gradient background filling based on the value percentage
# Use the exact colors from the example
return f'background: linear-gradient(90deg, rgba(46, 125, 50, 0.5) {val_float}%, rgba(46, 125, 50, 0.1) {val_float}%); color: white;'
except:
return 'background-color: #121212; color: white;'
# Apply the highlighting to performance metric columns
for col in highlight_cols:
styled = styled.applymap(highlight_green, subset=[col])
styled = styled.set_properties(
subset=["Model"],
**{'color': '#4da6ff'}
)
return styled
def increment_counter(counter):
return counter + 1
def handle_select(evt: gr.SelectData, counter):
return counter + 1, f"{evt.index}", f"{evt.value}"
def start_api_server():
api_process = subprocess.Popen(
[sys.executable, "api.py"],
cwd=os.path.dirname(os.path.abspath(__file__))
)
# Give the API server a moment to start
time.sleep(2)
return api_process
def apply_filters(filters, models_data):
if not filters or len(filters) == 0:
# No filters selected, return all data
return models_data
filtered_models = []
for model in models_data:
scores = model.get("scores", {})
average_score = scores.get("average", 0)
model_name = model.get("model_name", "")
# Check which filters are selected and apply them
should_include = False
for filter_option in filters:
if "Edge Devices" in filter_option and average_score < 45 or "Consumers" in filter_option and 45 <= average_score < 55 or "Mid-range" in filter_option and 55 <= average_score < 65 or "GPU-rich" in filter_option and average_score >= 65 or "Official Providers" in filter_option and ("/" not in model_name or
model_name.startswith("meta/") or
model_name.startswith("google/") or
model_name.startswith("openai/") or
model_name.startswith("microsoft/")):
should_include = True
break
if should_include:
filtered_models.append(model)
return filtered_models
def format_timestamp(timestamp_str):
try:
# Parse ISO format timestamp
# Try to parse ISO format with timezone
try:
dt = datetime.fromisoformat(timestamp_str)
except:
# Fallback for different timestamp formats
dt = datetime.strptime(timestamp_str, "%Y-%m-%dT%H:%M:%S.%f")
# Format nicely for display
return dt.strftime("%B %d, %Y at %I:%M %p")
except Exception as e:
print(f"Error formatting timestamp: {e}")
return timestamp_str
def create_leaderboard_data(selected_filters=None):
try:
response = requests.get("http://localhost:8000/api/leaderboard")
if response.status_code == 200:
data = response.json()
models_data = data.get("models", [])
updated_at = data.get("updated_at", "Unknown")
formatted_time = format_timestamp(updated_at)
# Apply filters if any are selected
if selected_filters:
models_data = apply_filters(selected_filters, models_data)
rows = []
for i, model in enumerate(models_data, 1):
model_name = model["model_name"]
model_type = model["type"]
scores = model["scores"]
co2_cost = model.get("co2_cost", "N/A")
# Only use green for open and red for closed
emoji = "馃煝" if model_type.lower() == "open" else "馃敶"
type_with_emoji = f"{emoji} {model_type.upper()}"
# Use model_link from API if available, otherwise create one
if "model_link" in model and model["model_link"]:
model_link = f"[{model_name}]({model['model_link']})"
# Format model name with link
elif "/" in model_name:
org, name = model_name.split("/", 1)
model_link = f"[{model_name}](https://huggingface.co/{quote(model_name)})"
else:
model_link = f"[{model_name}](https://huggingface.co/models?search={quote(model_name)})"
rows.append([
i, # Rank
type_with_emoji,
model_link,
f"{scores.get('average', 0):.2f}",
f"{scores.get('ifeval', 0):.2f}",
f"{scores.get('bbhi', 0):.2f}",
f"{scores.get('math', 0):.2f}",
f"{scores.get('gpqa', 0):.2f}",
f"{scores.get('mujb', 0):.2f}",
f"{scores.get('mmlu', 0):.2f}",
f"{co2_cost}" if isinstance(co2_cost, (int, float)) else co2_cost
])
df = pd.DataFrame(rows, columns=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"])
styled_df = style_dataframe(df)
return styled_df, formatted_time
else:
# Return an empty dataframe with proper columns if API fails
empty_df = pd.DataFrame(columns=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"])
return empty_df, "Unknown"
except Exception as e:
print(f"Error fetching leaderboard data: {e}")
# Return an empty dataframe with proper columns if API fails
empty_df = pd.DataFrame(columns=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"])
return empty_df, "Unknown"
def load_svg(file_path="hf.svg"):
with open(file_path) as f:
svg_content = f.read()
return svg_content
def get_filter_data():
try:
response = requests.get("http://localhost:8000/api/filters")
if response.status_code == 200:
filter_data = response.json()
return [
f"For Edge Devices 路 {filter_data.get('edge_devices', 0)}",
f"For Consumers 路 {filter_data.get('consumers', 0)}",
f"Mid-range 路 {filter_data.get('midrange', 0)}",
f"For the GPU-rich 路 {filter_data.get('gpu_rich', 0)}",
f"Only Official Providers 路 {filter_data.get('official_providers', 0)}"
]
else:
return [
"For Edge Devices 路 0",
"For Consumers 路 0",
"Mid-range 路 0",
"For the GPU-rich 路 0",
"Only Official Providers 路 0"
]
except Exception as e:
print(f"Error fetching filter data: {e}")
return [
"For Edge Devices 路 0",
"For Consumers 路 0",
"Mid-range 路 0",
"For the GPU-rich 路 0",
"Only Official Providers 路 0"
]
def refresh_leaderboard(selected_filters=None):
try:
# Request a refresh from the API
requests.get("http://localhost:8000/api/leaderboard?refresh=true")
# Get updated data
df, timestamp = create_leaderboard_data(selected_filters)
filter_choices = get_filter_data()
return df, filter_choices, f"Last updated: {timestamp}"
except Exception as e:
print(f"Error refreshing data: {e}")
return None, None, "Error refreshing data"
def update_table(filters):
df, timestamp = create_leaderboard_data(filters)
return df, f"Last updated: {timestamp}"
def load_css(file_path="style.css"):
try:
current_dir = os.path.dirname(os.path.abspath(__file__))
css_path = os.path.join(current_dir, file_path)
with open(css_path) as f:
css_content = f.read()
return css_content
except Exception as e:
print(f"Error loading CSS file: {e}")
# Return a basic CSS if file not found
return """
.dataframe-container {
border-radius: 8px;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
}
"""
with gr.Blocks(css=load_css()) as demo:
df, timestamp = create_leaderboard_data()
with gr.Row():
svg_content = load_svg()
gr.HTML(svg_content)
gr.HTML("""
<div style="display: flex; align-items: center; justify-content: center; margin-bottom: 10px;">
<div class="leaderboard-title">Open LLM Leaderboard</div>
</div>
<div class="leaderboard-subtitle">Comparing Large Language Models in an open and reproducible way</div>
""")
status_text = gr.HTML(f"""<div style="text-align: center; margin-bottom: 10px;">Last updated: {timestamp}</div>""")
with gr.Row(elem_classes="filters-container"):
filter_choices = get_filter_data()
filters = gr.CheckboxGroup(
label="Quick Filters",
choices=filter_choices,
)
# Create and display the dataframe
leaderboard_table = gr.Dataframe(
value=df,
headers=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"],
datatype=["number", "str", "markdown", "str", "str", "str", "str", "str", "str", "str", "str"],
elem_id="leaderboard-table",
elem_classes="dataframe-container",
interactive=False,
max_height=600,
show_search="search",
show_copy_button=True,
show_fullscreen_button=True,
pinned_columns=2,
column_widths=["5%", "10%", "35%", "7%", "7%", "7%", "7%", "7%", "7%", "7%", "6%"]
)
refresh_btn = gr.Button("Refresh Data", elem_classes="refresh-btn")
refresh_btn.click(refresh_leaderboard, inputs=[filters], outputs=[leaderboard_table, filters, status_text])
filters.change(update_table, inputs=[filters], outputs=[leaderboard_table, status_text])
if __name__ == "__main__":
api_process = start_api_server()
demo.launch()
api_process.terminate()