Spaces:
Sleeping
Sleeping
File size: 11,633 Bytes
71a08c8 88c17a0 71a08c8 e9a5be2 704342a 88c17a0 71a08c8 e9a5be2 71a08c8 88c17a0 e9a5be2 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 a61644e 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 a61644e 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 e9a5be2 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 88c17a0 71a08c8 a61644e 71a08c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import gradio as gr
import os
import uuid
import threading
import pandas as pd
import numpy as np
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import CTransformers
from langchain_experimental.agents import create_pandas_dataframe_agent
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
# Global model cache
MODEL_CACHE = {
"model": None,
"init_lock": threading.Lock()
}
# Create directories for user data
os.makedirs("user_data", exist_ok=True)
def initialize_model_once():
"""Initialize model once using CTransformers API"""
with MODEL_CACHE["init_lock"]:
if MODEL_CACHE["model"] is None:
# Load Phi-2 model (smaller than Mistral)
MODEL_CACHE["model"] = CTransformers(
model="TheBloke/phi-2-GGUF",
model_file="phi-2.Q4_K_M.gguf",
model_type="phi2",
max_new_tokens=512,
temperature=0.1,
top_p=0.9,
repetition_penalty=1.1,
context_length=2048
)
return MODEL_CACHE["model"]
class ChatBot:
def __init__(self, session_id):
self.session_id = session_id
self.csv_info = None
self.df = None
self.chat_history = []
self.user_dir = f"user_data/{session_id}"
os.makedirs(self.user_dir, exist_ok=True)
def process_file(self, file):
if file is None:
return "Mohon upload file CSV terlebih dahulu."
try:
# Handle file from Gradio
file_path = file.name if hasattr(file, 'name') else str(file)
file_name = os.path.basename(file_path)
# Load and save CSV directly with pandas
try:
self.df = pd.read_csv(file_path)
user_file_path = f"{self.user_dir}/uploaded.csv"
self.df.to_csv(user_file_path, index=False)
# Store CSV info
self.csv_info = {
"filename": file_name,
"rows": self.df.shape[0],
"columns": self.df.shape[1],
"column_names": self.df.columns.tolist(),
}
print(f"CSV verified: {self.df.shape[0]} rows, {len(self.df.columns)} columns")
except Exception as e:
return f"Error membaca CSV: {str(e)}"
# Create query translator
try:
llm = initialize_model_once()
query_template = """
Kamu adalah asisten yang mengubah pertanyaan natural language menjadi kode Python dengan pandas.
Informasi tentang DataFrame:
- Nama kolom: {column_names}
- Jumlah baris: {num_rows}
- Sample data:
{sample_data}
Pertanyaan pengguna: {question}
Ubah pertanyaan tersebut menjadi kode pandas yang bisa dijalankan. Kode harus ringkas, efisien, dan menggunakan variabel 'df'.
Berikan HANYA kode python saja, tanpa backtick, tanpa penjelasan.
Kode:
"""
self.query_chain = LLMChain(
llm=llm,
prompt=PromptTemplate(
input_variables=["column_names", "num_rows", "sample_data", "question"],
template=query_template
)
)
print("Query translator created successfully")
except Exception as e:
return f"Error creating query translator: {str(e)}"
# Add file info to chat history
file_info = f"CSV berhasil dimuat: {file_name} dengan {self.df.shape[0]} baris dan {len(self.df.columns)} kolom. Kolom: {', '.join(self.df.columns.tolist())}"
self.chat_history.append(("System", file_info))
return f"File CSV '{file_name}' berhasil diproses! Anda dapat mulai mengajukan pertanyaan tentang data."
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error pemrosesan file: {str(e)}"
def chat(self, message, history):
if self.df is None or self.query_chain is None:
return "Mohon upload file CSV terlebih dahulu."
try:
# Handle metadata questions directly
message_lower = message.lower()
if "nama file" in message_lower:
return f"Nama file CSV adalah: {self.csv_info['filename']}"
elif "nama kolom" in message_lower:
return f"Kolom dalam CSV: {', '.join(self.csv_info['column_names'])}"
elif "jumlah baris" in message_lower or "berapa baris" in message_lower:
return f"Jumlah baris dalam CSV: {self.csv_info['rows']}"
# Get sample data for context
sample_str = self.df.head(3).to_string()
# Translate question to pandas code
code_response = self.query_chain.run(
column_names=str(self.csv_info["column_names"]),
num_rows=self.csv_info["rows"],
sample_data=sample_str,
question=message
)
# Clean and execute the code
try:
code = code_response.strip()
# Add safety prefix to prevent malicious code
if not code.startswith("df"):
code = "result = " + code
else:
code = "result = " + code
# Create local context with the dataframe
locals_dict = {"df": self.df, "pd": pd, "np": np}
# Execute the code
print(f"Executing code: {code}")
exec(code, {"pd": pd, "np": np}, locals_dict)
result = locals_dict.get("result", "No result returned")
# Format the result
if isinstance(result, pd.DataFrame):
if len(result) > 5:
result_str = result.head(5).to_string() + f"\n\n[{len(result)} baris ditemukan]"
else:
result_str = result.to_string()
elif isinstance(result, (pd.Series, np.ndarray)):
result_str = str(result)
else:
result_str = str(result)
# Build the response
response = f"Hasil analisis untuk pertanyaan: '{message}'\n\n"
response += f"Kode yang digunakan:\n```python\n{code}\n```\n\n"
response += f"Output:\n{result_str}"
self.chat_history.append((message, response))
return response
except Exception as e:
error_msg = f"Error mengeksekusi kode: {str(e)}\nKode yang dihasilkan:\n```python\n{code}\n```"
print(error_msg)
return error_msg
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error: {str(e)}"
# UI Code
def create_gradio_interface():
with gr.Blocks(title="CSV Data Analyzer") as interface:
session_id = gr.State(lambda: str(uuid.uuid4()))
chatbot_state = gr.State(lambda: None)
gr.HTML("<h1 style='text-align: center;'>CSV Data Analyzer</h1>")
gr.HTML("<h3 style='text-align: center;'>Ajukan pertanyaan tentang data CSV Anda</h3>")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload CSV Anda",
file_types=[".csv"]
)
process_button = gr.Button("Proses CSV")
with gr.Accordion("Contoh Pertanyaan", open=False):
gr.Markdown("""
- "Berapa jumlah data yang memiliki nilai Glucose di atas 150?"
- "Bagaimana distribusi kolom Age?"
- "Hitung nilai rata-rata dan standar deviasi untuk setiap kolom numerik"
- "Buat tabel frekuensi untuk kolom Outcome"
""")
with gr.Column(scale=2):
chatbot_interface = gr.Chatbot(
label="Riwayat Chat",
height=400
)
message_input = gr.Textbox(
label="Ketik pertanyaan Anda",
placeholder="Contoh: Berapa jumlah data yang memiliki nilai Glucose di atas 150?",
lines=2
)
submit_button = gr.Button("Kirim")
clear_button = gr.Button("Bersihkan Chat")
# Handler functions
def handle_process_file(file, sess_id):
chatbot = ChatBot(sess_id)
result = chatbot.process_file(file)
return chatbot, [(None, result)]
process_button.click(
fn=handle_process_file,
inputs=[file_input, session_id],
outputs=[chatbot_state, chatbot_interface]
)
def user_message_submitted(message, history, chatbot, sess_id):
history = history + [(message, None)]
return history, "", chatbot, sess_id
def bot_response(history, chatbot, sess_id):
if chatbot is None:
chatbot = ChatBot(sess_id)
history[-1] = (history[-1][0], "Mohon upload file CSV terlebih dahulu.")
return chatbot, history
user_message = history[-1][0]
response = chatbot.chat(user_message, history[:-1])
history[-1] = (user_message, response)
return chatbot, history
submit_button.click(
fn=user_message_submitted,
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
).then(
fn=bot_response,
inputs=[chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
message_input.submit(
fn=user_message_submitted,
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
).then(
fn=bot_response,
inputs=[chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
def handle_clear_chat(chatbot):
if chatbot is not None:
chatbot.chat_history = []
return chatbot, []
clear_button.click(
fn=handle_clear_chat,
inputs=[chatbot_state],
outputs=[chatbot_state, chatbot_interface]
)
return interface
# Launch the interface
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True) |