File size: 11,633 Bytes
71a08c8
 
 
 
 
88c17a0
71a08c8
 
 
e9a5be2
704342a
88c17a0
 
71a08c8
 
 
 
 
 
 
 
 
 
 
e9a5be2
71a08c8
 
88c17a0
e9a5be2
88c17a0
 
 
71a08c8
88c17a0
71a08c8
88c17a0
 
71a08c8
 
 
 
 
 
 
88c17a0
 
71a08c8
 
 
 
 
 
 
 
 
 
 
88c17a0
71a08c8
88c17a0
71a08c8
88c17a0
a61644e
88c17a0
71a08c8
88c17a0
 
 
 
 
 
 
 
 
71a08c8
88c17a0
71a08c8
88c17a0
71a08c8
 
88c17a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71a08c8
88c17a0
 
71a08c8
88c17a0
71a08c8
a61644e
88c17a0
71a08c8
 
88c17a0
71a08c8
 
 
 
 
 
88c17a0
71a08c8
 
 
88c17a0
 
 
 
 
 
 
 
71a08c8
88c17a0
 
e9a5be2
88c17a0
 
 
 
 
 
 
71a08c8
88c17a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71a08c8
 
 
 
 
88c17a0
71a08c8
88c17a0
71a08c8
 
 
88c17a0
 
71a08c8
 
 
 
 
 
 
 
 
88c17a0
71a08c8
88c17a0
 
 
 
71a08c8
 
 
 
 
 
 
 
88c17a0
 
71a08c8
 
 
 
 
a61644e
71a08c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import gradio as gr
import os
import uuid
import threading
import pandas as pd
import numpy as np
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import CTransformers
from langchain_experimental.agents import create_pandas_dataframe_agent
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

# Global model cache
MODEL_CACHE = {
    "model": None,
    "init_lock": threading.Lock()
}

# Create directories for user data
os.makedirs("user_data", exist_ok=True)

def initialize_model_once():
    """Initialize model once using CTransformers API"""
    with MODEL_CACHE["init_lock"]:
        if MODEL_CACHE["model"] is None:
            # Load Phi-2 model (smaller than Mistral)
            MODEL_CACHE["model"] = CTransformers(
                model="TheBloke/phi-2-GGUF",
                model_file="phi-2.Q4_K_M.gguf",
                model_type="phi2",
                max_new_tokens=512,
                temperature=0.1,
                top_p=0.9,
                repetition_penalty=1.1,
                context_length=2048
            )
    
    return MODEL_CACHE["model"]

class ChatBot:
    def __init__(self, session_id):
        self.session_id = session_id
        self.csv_info = None
        self.df = None
        self.chat_history = []
        self.user_dir = f"user_data/{session_id}"
        os.makedirs(self.user_dir, exist_ok=True)
        
    def process_file(self, file):
        if file is None:
            return "Mohon upload file CSV terlebih dahulu."
            
        try:
            # Handle file from Gradio
            file_path = file.name if hasattr(file, 'name') else str(file)
            file_name = os.path.basename(file_path)
            
            # Load and save CSV directly with pandas
            try:
                self.df = pd.read_csv(file_path)
                user_file_path = f"{self.user_dir}/uploaded.csv"
                self.df.to_csv(user_file_path, index=False)
                
                # Store CSV info
                self.csv_info = {
                    "filename": file_name,
                    "rows": self.df.shape[0],
                    "columns": self.df.shape[1],
                    "column_names": self.df.columns.tolist(),
                }
                
                print(f"CSV verified: {self.df.shape[0]} rows, {len(self.df.columns)} columns")
            except Exception as e:
                return f"Error membaca CSV: {str(e)}"
            
            # Create query translator
            try:
                llm = initialize_model_once()
                
                query_template = """
                Kamu adalah asisten yang mengubah pertanyaan natural language menjadi kode Python dengan pandas.
                
                Informasi tentang DataFrame:
                - Nama kolom: {column_names}
                - Jumlah baris: {num_rows}
                - Sample data:
                {sample_data}
                
                Pertanyaan pengguna: {question}
                
                Ubah pertanyaan tersebut menjadi kode pandas yang bisa dijalankan. Kode harus ringkas, efisien, dan menggunakan variabel 'df'.
                Berikan HANYA kode python saja, tanpa backtick, tanpa penjelasan.
                
                Kode:
                """
                
                self.query_chain = LLMChain(
                    llm=llm,
                    prompt=PromptTemplate(
                        input_variables=["column_names", "num_rows", "sample_data", "question"],
                        template=query_template
                    )
                )
                
                print("Query translator created successfully")
            except Exception as e:
                return f"Error creating query translator: {str(e)}"
            
            # Add file info to chat history
            file_info = f"CSV berhasil dimuat: {file_name} dengan {self.df.shape[0]} baris dan {len(self.df.columns)} kolom. Kolom: {', '.join(self.df.columns.tolist())}"
            self.chat_history.append(("System", file_info))
            
            return f"File CSV '{file_name}' berhasil diproses! Anda dapat mulai mengajukan pertanyaan tentang data."
        except Exception as e:
            import traceback
            print(traceback.format_exc())
            return f"Error pemrosesan file: {str(e)}"

    def chat(self, message, history):
        if self.df is None or self.query_chain is None:
            return "Mohon upload file CSV terlebih dahulu."
        
        try:
            # Handle metadata questions directly
            message_lower = message.lower()
            if "nama file" in message_lower:
                return f"Nama file CSV adalah: {self.csv_info['filename']}"
            elif "nama kolom" in message_lower:
                return f"Kolom dalam CSV: {', '.join(self.csv_info['column_names'])}"
            elif "jumlah baris" in message_lower or "berapa baris" in message_lower:
                return f"Jumlah baris dalam CSV: {self.csv_info['rows']}"
            
            # Get sample data for context
            sample_str = self.df.head(3).to_string()
            
            # Translate question to pandas code
            code_response = self.query_chain.run(
                column_names=str(self.csv_info["column_names"]),
                num_rows=self.csv_info["rows"],
                sample_data=sample_str,
                question=message
            )
            
            # Clean and execute the code
            try:
                code = code_response.strip()
                # Add safety prefix to prevent malicious code
                if not code.startswith("df"):
                    code = "result = " + code
                else:
                    code = "result = " + code
                    
                # Create local context with the dataframe
                locals_dict = {"df": self.df, "pd": pd, "np": np}
                
                # Execute the code
                print(f"Executing code: {code}")
                exec(code, {"pd": pd, "np": np}, locals_dict)
                result = locals_dict.get("result", "No result returned")
                
                # Format the result
                if isinstance(result, pd.DataFrame):
                    if len(result) > 5:
                        result_str = result.head(5).to_string() + f"\n\n[{len(result)} baris ditemukan]"
                    else:
                        result_str = result.to_string()
                elif isinstance(result, (pd.Series, np.ndarray)):
                    result_str = str(result)
                else:
                    result_str = str(result)
                
                # Build the response
                response = f"Hasil analisis untuk pertanyaan: '{message}'\n\n"
                response += f"Kode yang digunakan:\n```python\n{code}\n```\n\n"
                response += f"Output:\n{result_str}"
                
                self.chat_history.append((message, response))
                return response
                
            except Exception as e:
                error_msg = f"Error mengeksekusi kode: {str(e)}\nKode yang dihasilkan:\n```python\n{code}\n```"
                print(error_msg)
                return error_msg
                
        except Exception as e:
            import traceback
            print(traceback.format_exc())
            return f"Error: {str(e)}"

# UI Code 
def create_gradio_interface():
    with gr.Blocks(title="CSV Data Analyzer") as interface:
        session_id = gr.State(lambda: str(uuid.uuid4()))
        chatbot_state = gr.State(lambda: None)
        
        gr.HTML("<h1 style='text-align: center;'>CSV Data Analyzer</h1>")
        gr.HTML("<h3 style='text-align: center;'>Ajukan pertanyaan tentang data CSV Anda</h3>")
        
        with gr.Row():
            with gr.Column(scale=1):
                file_input = gr.File(
                    label="Upload CSV Anda",
                    file_types=[".csv"]
                )
                process_button = gr.Button("Proses CSV")
                
                with gr.Accordion("Contoh Pertanyaan", open=False):
                    gr.Markdown("""
                    - "Berapa jumlah data yang memiliki nilai Glucose di atas 150?"
                    - "Bagaimana distribusi kolom Age?"
                    - "Hitung nilai rata-rata dan standar deviasi untuk setiap kolom numerik"
                    - "Buat tabel frekuensi untuk kolom Outcome"
                    """)
            
            with gr.Column(scale=2):
                chatbot_interface = gr.Chatbot(
                    label="Riwayat Chat",
                    height=400
                )
                message_input = gr.Textbox(
                    label="Ketik pertanyaan Anda",
                    placeholder="Contoh: Berapa jumlah data yang memiliki nilai Glucose di atas 150?",
                    lines=2
                )
                submit_button = gr.Button("Kirim")
                clear_button = gr.Button("Bersihkan Chat")
        
        # Handler functions
        def handle_process_file(file, sess_id):
            chatbot = ChatBot(sess_id)
            result = chatbot.process_file(file)
            return chatbot, [(None, result)]
            
        process_button.click(
            fn=handle_process_file,
            inputs=[file_input, session_id],
            outputs=[chatbot_state, chatbot_interface]
        )
        
        def user_message_submitted(message, history, chatbot, sess_id):
            history = history + [(message, None)]
            return history, "", chatbot, sess_id
        
        def bot_response(history, chatbot, sess_id):
            if chatbot is None:
                chatbot = ChatBot(sess_id)
                history[-1] = (history[-1][0], "Mohon upload file CSV terlebih dahulu.")
                return chatbot, history
            
            user_message = history[-1][0]
            response = chatbot.chat(user_message, history[:-1])
            history[-1] = (user_message, response)
            return chatbot, history
        
        submit_button.click(
            fn=user_message_submitted,
            inputs=[message_input, chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_interface, message_input, chatbot_state, session_id]
        ).then(
            fn=bot_response,
            inputs=[chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_state, chatbot_interface]
        )
        
        message_input.submit(
            fn=user_message_submitted,
            inputs=[message_input, chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_interface, message_input, chatbot_state, session_id]
        ).then(
            fn=bot_response,
            inputs=[chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_state, chatbot_interface]
        )
        
        def handle_clear_chat(chatbot):
            if chatbot is not None:
                chatbot.chat_history = []
            return chatbot, []
            
        clear_button.click(
            fn=handle_clear_chat,
            inputs=[chatbot_state],
            outputs=[chatbot_state, chatbot_interface]
        )
        
    return interface

# Launch the interface
if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch(share=True)