File size: 9,499 Bytes
71a08c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35a41ec
71a08c8
 
35a41ec
71a08c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import gradio as gr
import os
import uuid
import threading
import pandas as pd
import torch
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import CTransformers
from langchain.chains import ConversationalRetrievalChain

# Global model cache
MODEL_CACHE = {
    "model": None,
    "init_lock": threading.Lock()
}

# Create directories for user data
os.makedirs("user_data", exist_ok=True)

def initialize_model_once():
    """Initialize the model once and cache it"""
    with MODEL_CACHE["init_lock"]:
        if MODEL_CACHE["model"] is None:
            # Path ke model local dalam repository
            model_path = "tinyllama-1.1b-chat-v1.0.Q5_K_M.gguf"
            MODEL_CACHE["model"] = CTransformers(
                model=model_path,
                model_type="tinyllama",
                max_new_tokens=512,
                temperature=0.2,
                top_p=0.9,
                top_k=50,
                repetition_penalty=1.2
            )
    
    return MODEL_CACHE["model"]

class ChatBot:
    def __init__(self, session_id):
        self.session_id = session_id
        self.chat_history = []
        self.chain = None
        self.user_dir = f"user_data/{session_id}"
        os.makedirs(self.user_dir, exist_ok=True)
        
    def process_file(self, file):
        if file is None:
            return "Mohon upload file CSV terlebih dahulu."
            
        try:
            # Handle file from Gradio
            file_path = file.name if hasattr(file, 'name') else str(file)
            
            # Copy to user directory
            user_file_path = f"{self.user_dir}/uploaded.csv"
            
            # For debugging
            print(f"Processing file: {file_path}")
            print(f"Saving to: {user_file_path}")
            
            # Verify the CSV can be loaded
            try:
                df = pd.read_csv(file_path)
                print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns")
                
                # Save a copy in user directory
                df.to_csv(user_file_path, index=False)
            except Exception as e:
                return f"Error membaca CSV: {str(e)}"
            
            # Load document
            try:
                loader = CSVLoader(file_path=file_path, encoding="utf-8", csv_args={
                    'delimiter': ','})
                data = loader.load()
                print(f"Documents loaded: {len(data)}")
            except Exception as e:
                return f"Error loading documents: {str(e)}"
            
            # Create vector database
            try:
                db_path = f"{self.user_dir}/db_faiss"
                embeddings = HuggingFaceEmbeddings(
                    model_name='sentence-transformers/all-MiniLM-L6-v2',
                    model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
                )
                
                db = FAISS.from_documents(data, embeddings)
                db.save_local(db_path)
                print(f"Vector database created at {db_path}")
            except Exception as e:
                return f"Error creating vector database: {str(e)}"
            
            # Create LLM and chain
            try:
                llm = initialize_model_once()
                self.chain = ConversationalRetrievalChain.from_llm(
                    llm=llm, 
                    retriever=db.as_retriever(search_kwargs={"k": 4})
                )
                print("Chain created successfully")
            except Exception as e:
                return f"Error creating chain: {str(e)}"
            
            # Add basic file info to chat history for context
            file_info = f"CSV berhasil dimuat dengan {df.shape[0]} baris dan {len(df.columns)} kolom. Kolom: {', '.join(df.columns.tolist())}"
            self.chat_history.append(("System", file_info))
            
            return "File CSV berhasil diproses! Anda dapat mulai chat dengan model Llama2."
        except Exception as e:
            import traceback
            print(traceback.format_exc())
            return f"Error pemrosesan file: {str(e)}"

    def chat(self, message, history):
        if self.chain is None:
            return "Mohon upload file CSV terlebih dahulu."
        
        try:
            # Process the question with the chain
            result = self.chain({"question": message, "chat_history": self.chat_history})
            
            # Update internal chat history
            answer = result["answer"]
            self.chat_history.append((message, answer))
            
            # Return just the answer for Gradio
            return answer
        except Exception as e:
            import traceback
            print(traceback.format_exc())
            return f"Error: {str(e)}"

    def cleanup(self):
        """Release resources when session ends"""
        self.chain = None

def create_gradio_interface():
    with gr.Blocks(title="Chat with CSV using Llama2 🦙") as interface:
        # Create unique session ID for each user
        session_id = gr.State(lambda: str(uuid.uuid4()))
        # Create user-specific chatbot instance
        chatbot_state = gr.State(lambda: None)
        
        gr.HTML("<h1 style='text-align: center;'>Chat with CSV using Llama2 🦙</h1>")
        gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV yang powerfull</h3>")
        
        with gr.Row():
            with gr.Column(scale=1):
                file_input = gr.File(
                    label="Upload CSV Anda",
                    file_types=[".csv"]
                )
                process_button = gr.Button("Proses CSV")
                
                with gr.Accordion("Informasi Model", open=False):
                    gr.Markdown("""
                    **Model**: Llama-2-7b-chat
                    
                    **Fitur**:
                    - Dioptimalkan untuk analisis data dan percakapan
                    - Efisien dengan kuantisasi GGUF
                    - Manajemen sesi per pengguna
                    """)
            
            with gr.Column(scale=2):
                chatbot_interface = gr.Chatbot(
                    label="Riwayat Chat",
                    height=400
                )
                message_input = gr.Textbox(
                    label="Ketik pesan Anda",
                    placeholder="Tanyakan tentang data CSV Anda...",
                    lines=2
                )
                submit_button = gr.Button("Kirim")
                clear_button = gr.Button("Bersihkan Chat")
        
        # Process file handler
        def handle_process_file(file, sess_id):
            # Create chatbot if doesn't exist
            chatbot = ChatBot(sess_id)
            result = chatbot.process_file(file)
            return chatbot, [(None, result)]
            
        process_button.click(
            fn=handle_process_file,
            inputs=[file_input, session_id],
            outputs=[chatbot_state, chatbot_interface]
        )
        
        # Chat handler - show user message immediately and then start thinking
        def user_message_submitted(message, history, chatbot, sess_id):
            # Add user message to history immediately
            history = history + [(message, None)]
            return history, "", chatbot, sess_id
        
        def bot_response(history, chatbot, sess_id):
            # Create chatbot if doesn't exist
            if chatbot is None:
                chatbot = ChatBot(sess_id)
                history[-1] = (history[-1][0], "Mohon upload file CSV terlebih dahulu.")
                return chatbot, history
            
            user_message = history[-1][0]
            response = chatbot.chat(user_message, history[:-1])
            
            # Update the last history item with the response
            history[-1] = (user_message, response)
            return chatbot, history
        
        submit_button.click(
            fn=user_message_submitted,
            inputs=[message_input, chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_interface, message_input, chatbot_state, session_id]
        ).then(
            fn=bot_response,
            inputs=[chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_state, chatbot_interface]
        )
        
        # Also hook up message input for pressing Enter
        message_input.submit(
            fn=user_message_submitted,
            inputs=[message_input, chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_interface, message_input, chatbot_state, session_id]
        ).then(
            fn=bot_response,
            inputs=[chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_state, chatbot_interface]
        )
        
        # Clear chat handler
        def handle_clear_chat(chatbot):
            if chatbot is not None:
                chatbot.chat_history = []
            return chatbot, []
            
        clear_button.click(
            fn=handle_clear_chat,
            inputs=[chatbot_state],
            outputs=[chatbot_state, chatbot_interface]
        )
        
    return interface

# Launch the interface
if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch(share=True)