Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import uuid | |
import threading | |
import pandas as pd | |
import torch | |
from langchain.document_loaders.csv_loader import CSVLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import CTransformers | |
from langchain.chains import ConversationalRetrievalChain | |
# Global model cache | |
MODEL_CACHE = { | |
"model": None, | |
"init_lock": threading.Lock() | |
} | |
# Create directories for user data | |
os.makedirs("user_data", exist_ok=True) | |
def initialize_model_once(): | |
"""Initialize the model once and cache it""" | |
with MODEL_CACHE["init_lock"]: | |
if MODEL_CACHE["model"] is None: | |
# Path ke model local dalam repository | |
model_path = "tinyllama-1.1b-chat-v1.0.Q5_K_M.gguf" | |
MODEL_CACHE["model"] = CTransformers( | |
model=model_path, | |
model_type="tinyllama", | |
max_new_tokens=512, | |
temperature=0.2, | |
top_p=0.9, | |
top_k=50, | |
repetition_penalty=1.2 | |
) | |
return MODEL_CACHE["model"] | |
class ChatBot: | |
def __init__(self, session_id): | |
self.session_id = session_id | |
self.chat_history = [] | |
self.chain = None | |
self.user_dir = f"user_data/{session_id}" | |
os.makedirs(self.user_dir, exist_ok=True) | |
def process_file(self, file): | |
if file is None: | |
return "Mohon upload file CSV terlebih dahulu." | |
try: | |
# Handle file from Gradio | |
file_path = file.name if hasattr(file, 'name') else str(file) | |
# Copy to user directory | |
user_file_path = f"{self.user_dir}/uploaded.csv" | |
# For debugging | |
print(f"Processing file: {file_path}") | |
print(f"Saving to: {user_file_path}") | |
# Verify the CSV can be loaded | |
try: | |
df = pd.read_csv(file_path) | |
print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns") | |
# Save a copy in user directory | |
df.to_csv(user_file_path, index=False) | |
except Exception as e: | |
return f"Error membaca CSV: {str(e)}" | |
# Load document | |
try: | |
loader = CSVLoader(file_path=file_path, encoding="utf-8", csv_args={ | |
'delimiter': ','}) | |
data = loader.load() | |
print(f"Documents loaded: {len(data)}") | |
except Exception as e: | |
return f"Error loading documents: {str(e)}" | |
# Create vector database | |
try: | |
db_path = f"{self.user_dir}/db_faiss" | |
embeddings = HuggingFaceEmbeddings( | |
model_name='sentence-transformers/all-MiniLM-L6-v2', | |
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'} | |
) | |
db = FAISS.from_documents(data, embeddings) | |
db.save_local(db_path) | |
print(f"Vector database created at {db_path}") | |
except Exception as e: | |
return f"Error creating vector database: {str(e)}" | |
# Create LLM and chain | |
try: | |
llm = initialize_model_once() | |
self.chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=db.as_retriever(search_kwargs={"k": 4}) | |
) | |
print("Chain created successfully") | |
except Exception as e: | |
return f"Error creating chain: {str(e)}" | |
# Add basic file info to chat history for context | |
file_info = f"CSV berhasil dimuat dengan {df.shape[0]} baris dan {len(df.columns)} kolom. Kolom: {', '.join(df.columns.tolist())}" | |
self.chat_history.append(("System", file_info)) | |
return "File CSV berhasil diproses! Anda dapat mulai chat dengan model Llama2." | |
except Exception as e: | |
import traceback | |
print(traceback.format_exc()) | |
return f"Error pemrosesan file: {str(e)}" | |
def chat(self, message, history): | |
if self.chain is None: | |
return "Mohon upload file CSV terlebih dahulu." | |
try: | |
# Process the question with the chain | |
result = self.chain({"question": message, "chat_history": self.chat_history}) | |
# Update internal chat history | |
answer = result["answer"] | |
self.chat_history.append((message, answer)) | |
# Return just the answer for Gradio | |
return answer | |
except Exception as e: | |
import traceback | |
print(traceback.format_exc()) | |
return f"Error: {str(e)}" | |
def cleanup(self): | |
"""Release resources when session ends""" | |
self.chain = None | |
def create_gradio_interface(): | |
with gr.Blocks(title="Chat with CSV using Llama2 🦙") as interface: | |
# Create unique session ID for each user | |
session_id = gr.State(lambda: str(uuid.uuid4())) | |
# Create user-specific chatbot instance | |
chatbot_state = gr.State(lambda: None) | |
gr.HTML("<h1 style='text-align: center;'>Chat with CSV using Llama2 🦙</h1>") | |
gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV yang powerfull</h3>") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
file_input = gr.File( | |
label="Upload CSV Anda", | |
file_types=[".csv"] | |
) | |
process_button = gr.Button("Proses CSV") | |
with gr.Accordion("Informasi Model", open=False): | |
gr.Markdown(""" | |
**Model**: Llama-2-7b-chat | |
**Fitur**: | |
- Dioptimalkan untuk analisis data dan percakapan | |
- Efisien dengan kuantisasi GGUF | |
- Manajemen sesi per pengguna | |
""") | |
with gr.Column(scale=2): | |
chatbot_interface = gr.Chatbot( | |
label="Riwayat Chat", | |
height=400 | |
) | |
message_input = gr.Textbox( | |
label="Ketik pesan Anda", | |
placeholder="Tanyakan tentang data CSV Anda...", | |
lines=2 | |
) | |
submit_button = gr.Button("Kirim") | |
clear_button = gr.Button("Bersihkan Chat") | |
# Process file handler | |
def handle_process_file(file, sess_id): | |
# Create chatbot if doesn't exist | |
chatbot = ChatBot(sess_id) | |
result = chatbot.process_file(file) | |
return chatbot, [(None, result)] | |
process_button.click( | |
fn=handle_process_file, | |
inputs=[file_input, session_id], | |
outputs=[chatbot_state, chatbot_interface] | |
) | |
# Chat handler - show user message immediately and then start thinking | |
def user_message_submitted(message, history, chatbot, sess_id): | |
# Add user message to history immediately | |
history = history + [(message, None)] | |
return history, "", chatbot, sess_id | |
def bot_response(history, chatbot, sess_id): | |
# Create chatbot if doesn't exist | |
if chatbot is None: | |
chatbot = ChatBot(sess_id) | |
history[-1] = (history[-1][0], "Mohon upload file CSV terlebih dahulu.") | |
return chatbot, history | |
user_message = history[-1][0] | |
response = chatbot.chat(user_message, history[:-1]) | |
# Update the last history item with the response | |
history[-1] = (user_message, response) | |
return chatbot, history | |
submit_button.click( | |
fn=user_message_submitted, | |
inputs=[message_input, chatbot_interface, chatbot_state, session_id], | |
outputs=[chatbot_interface, message_input, chatbot_state, session_id] | |
).then( | |
fn=bot_response, | |
inputs=[chatbot_interface, chatbot_state, session_id], | |
outputs=[chatbot_state, chatbot_interface] | |
) | |
# Also hook up message input for pressing Enter | |
message_input.submit( | |
fn=user_message_submitted, | |
inputs=[message_input, chatbot_interface, chatbot_state, session_id], | |
outputs=[chatbot_interface, message_input, chatbot_state, session_id] | |
).then( | |
fn=bot_response, | |
inputs=[chatbot_interface, chatbot_state, session_id], | |
outputs=[chatbot_state, chatbot_interface] | |
) | |
# Clear chat handler | |
def handle_clear_chat(chatbot): | |
if chatbot is not None: | |
chatbot.chat_history = [] | |
return chatbot, [] | |
clear_button.click( | |
fn=handle_clear_chat, | |
inputs=[chatbot_state], | |
outputs=[chatbot_state, chatbot_interface] | |
) | |
return interface | |
# Launch the interface | |
if __name__ == "__main__": | |
demo = create_gradio_interface() | |
demo.launch(share=True) |