File size: 10,197 Bytes
d3c36f7 9871131 d3c36f7 033dd6b d3c36f7 ad2a1ab d3c36f7 033dd6b d3c36f7 ad2a1ab d3c36f7 033dd6b d3c36f7 033dd6b d3c36f7 28a95a4 d3c36f7 9871131 f5272ee ad2a1ab d3c36f7 ad2a1ab d3c36f7 ec2a183 d3c36f7 033dd6b d3c36f7 0fe5493 d3c36f7 033dd6b d3c36f7 a0ec4db 033dd6b 908094c d3c36f7 ad2a1ab d3c36f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="Empirical Benchmarking of Algorithmic Fairness in Machine Learning Models">
<meta name="keywords" content="Machine Learning, Bias Mitigation, Benchmark">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics</title>
<link href="https://fonts.googleapis.com/css?family=Space+Grotesk"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="./static/images/favicon.svg">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics</h1>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://crismunoz.github.io/" target="_blank">Cristian Munoz</a><sup>1</sup>,</span>
<span class="author-block">
<a href="https://kleytondacosta.com" target="_blank">Kleyton da Costa</a><sup>1, 2</sup>,</span>
<span class="author-block">
<a href="https://sites.google.com/view/bmodenesi" target="_blank">Bernardo Modenesi</a><sup>3</sup>,
</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?user=MuJGqNAAAAAJ&hl=en" target="_blank">Adriano Koshiyama</a><sup>1</sup>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>1</sup>Holistic AI,</span>
<span class="author-block"><sup>2</sup>Pontifical Catholic University of Rio de Janeiro,</span>
<span class="author-block"><sup>2</sup>University of Utah</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://arxiv.org/pdf/2011.12948" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/abs/2011.12948" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Code Link. -->
<span class="link-block">
<a href="https://github.com/holistic-ai/holisticai-research/tree/main/bmbench" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<img src="./static/images/explainability_metrics.png" alt="EAMEX Image" width="100%">
<h2 class="subtitle has-text-centered">
<span class="dnerf">EAMEX</span> framework and pipeline process.
</h2>
</div>
</div>
</section>
<section class="hero is-light is-small">
<div class="hero-body">
<div class="container">
<div id="results-carousel" class="carousel results-carousel">
<div class="item item-steve">
<img src="./static/images/explainability_metrics.png" alt="EAMEX Image" width="100%">
<h2 class="subtitle has-text-centered">
<span class="dnerf">EAMEX</span> framework and pipeline process.
</h2>
</div>
<div class="item item-chair-tp">
<img src="./static/images/explainability_metrics.png" alt="EAMEX Image" width="100%">
<h2 class="subtitle has-text-centered">
<span class="dnerf">EAMEX</span> framework and pipeline process.
</h2>
</div>
<div class="item item-shiba">
<img src="./static/images/explainability_metrics.png" alt="EAMEX Image" width="100%">
<h2 class="subtitle has-text-centered">
<span class="dnerf">EAMEX</span> framework and pipeline process.
</h2>
</div>
<div class="item item-fullbody">
<img src="./static/images/explainability_metrics.png" alt="EAMEX Image" width="100%">
<h2 class="subtitle has-text-centered">
<span class="dnerf">EAMEX</span> framework and pipeline process.
</h2>
</div>
<div class="item item-blueshirt">
<img src="./static/images/explainability_metrics.png" alt="EAMEX Image" width="100%">
<h2 class="subtitle has-text-centered">
<span class="dnerf">EAMEX</span> framework and pipeline process.
</h2>
</div>
<div class="item item-mask">
<img src="./static/images/explainability_metrics.png" alt="EAMEX Image" width="100%">
<h2 class="subtitle has-text-centered">
<span class="dnerf">EAMEX</span> framework and pipeline process.
</h2>
</div>
<div class="item item-coffee">
<img src="./static/images/explainability_metrics.png" alt="EAMEX Image" width="100%">
<h2 class="subtitle has-text-centered">
<span class="dnerf">EAMEX</span> framework and pipeline process.
</h2>
</div>
<div class="item item-toby">
<img src="./static/images/explainability_metrics.png" alt="EAMEX Image" width="100%">
<h2 class="subtitle has-text-centered">
<span class="dnerf">EAMEX</span> framework and pipeline process.
</h2>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
The rapid integration of artificial intelligence (AI) into various industries has introduced new challenges in
governance and regulation, particularly regarding the understanding of complex AI systems. A critical demand
from decision-makers is the ability to explain the results of machine learning models, which is essential for
fostering trust and ensuring ethical AI practices. In this paper, we develop six distinct model-agnostic metrics
designed to quantify the extent to which model predictions can be explained. These metrics measure different aspects
of model explainability, ranging from local importance, global importance, and surrogate predictions, allowing for a
comprehensive evaluation of how models generate their outputs. Furthermore, by computing our metrics, we can rank
models in terms of explainability criteria such as importance concentration and consistency, prediction fluctuation,
and surrogate fidelity and stability, offering a valuable tool for selecting models based not only on accuracy but
also on transparency. We demonstrate the practical utility of these metrics on classification and regression tasks,
and integrate these metrics into an existing Python package for public use.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@article{dacosta2025bmbench,
author = {Munoz, C., da Costa, K., Modenesi, B., Koshiyama, A.},
title = {Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics},
year = {2024},
url = {}
}</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="content has-text-centered">
<a class="icon-link" target="_blank"
href="./static/videos/nerfies_paper.pdf">
<i class="fas fa-file-pdf"></i>
</a>
<a class="icon-link" href="https://github.com/holistic-ai/holisticai-research/" target="_blank" class="external-link" disabled>
<i class="fab fa-github"></i>
</a>
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This website is licensed under a <a rel="license" target="_blank"
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>
|