File size: 7,629 Bytes
d3c36f7
 
 
 
 
9871131
 
d3c36f7
033dd6b
d3c36f7
ad2a1ab
d3c36f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
033dd6b
d3c36f7
 
ad2a1ab
d3c36f7
033dd6b
d3c36f7
033dd6b
d3c36f7
 
28a95a4
d3c36f7
 
 
 
9871131
f5272ee
ad2a1ab
d3c36f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad2a1ab
d3c36f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af13c8e
d3c36f7
033dd6b
d3c36f7
 
 
 
 
 
 
 
 
 
 
 
 
 
033dd6b
 
 
 
 
 
 
 
 
 
 
d3c36f7
 
 
 
 
 
 
 
 
 
 
a0ec4db
033dd6b
 
 
908094c
d3c36f7
 
 
 
 
 
 
 
 
 
 
 
ad2a1ab
d3c36f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8">
  <meta name="description"
        content="Empirical Benchmarking of Algorithmic Fairness in Machine Learning Models">
  <meta name="keywords" content="Machine Learning, Bias Mitigation, Benchmark">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <title>Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics</title>

  <link href="https://fonts.googleapis.com/css?family=Space+Grotesk"
        rel="stylesheet">

  <link rel="stylesheet" href="./static/css/bulma.min.css">
  <link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
  <link rel="stylesheet" href="./static/css/bulma-slider.min.css">
  <link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
  <link rel="stylesheet"
        href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
  <link rel="stylesheet" href="./static/css/index.css">
  <link rel="icon" href="./static/images/favicon.svg">

  <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
  <script defer src="./static/js/fontawesome.all.min.js"></script>
  <script src="./static/js/bulma-carousel.min.js"></script>
  <script src="./static/js/bulma-slider.min.js"></script>
  <script src="./static/js/index.js"></script>
</head>
<body>

<section class="hero">
  <div class="hero-body">
    <div class="container is-max-desktop">
      <div class="columns is-centered">
        <div class="column has-text-centered">
          <h1 class="title is-1 publication-title">Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics</h1>
          <div class="is-size-5 publication-authors">
            <span class="author-block">
              <a href="https://crismunoz.github.io/" target="_blank">Cristian Munoz</a><sup>1</sup>,</span>
            <span class="author-block">
              <a href="https://kleytondacosta.com" target="_blank">Kleyton da Costa</a><sup>1, 2</sup>,</span>
            <span class="author-block">
              <a href="https://sites.google.com/view/bmodenesi" target="_blank">Bernardo Modenesi</a><sup>3</sup>,
            </span>
            <span class="author-block">
              <a href="https://scholar.google.com/citations?user=MuJGqNAAAAAJ&hl=en" target="_blank">Adriano Koshiyama</a><sup>1</sup>
            </span>
          </div>

          <div class="is-size-5 publication-authors">
            <span class="author-block"><sup>1</sup>Holistic AI,</span>
            <span class="author-block"><sup>2</sup>Pontifical Catholic University of Rio de Janeiro,</span>
            <span class="author-block"><sup>2</sup>University of Utah</span>
          </div>

          <div class="column has-text-centered">
            <div class="publication-links">
              <!-- PDF Link. -->
              <span class="link-block">
                <a href="https://arxiv.org/pdf/2011.12948" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fas fa-file-pdf"></i>
                  </span>
                  <span>Paper</span>
                </a>
              </span>
              <span class="link-block">
                <a href="https://arxiv.org/abs/2011.12948" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="ai ai-arxiv"></i>
                  </span>
                  <span>arXiv</span>
                </a>
              </span>
              <!-- Code Link. -->
              <span class="link-block">
                <a href="https://github.com/holistic-ai/holisticai-research/tree/main/bmbench" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fab fa-github"></i>
                  </span>
                  <span>Code</span>
                  </a>
              </span>
            </div>
          </div>
        </div>
      </div>
    </div>
  </div>
</section>

<section class="hero teaser">
  <div class="container is-max-desktop">
    <div class="hero-body">
      <img src="./static/images/bmbench.png" alt="BMBENCH Image" width="100%">
      <h2 class="subtitle has-text-centered">
        <span class="dnerf">EAMEX</span> framework and pipeline process.
      </h2>
    </div>
  </div>
</section>


<section class="section">
  <div class="container is-max-desktop">
    <!-- Abstract. -->
    <div class="columns is-centered has-text-centered">
      <div class="column is-four-fifths">
        <h2 class="title is-3">Abstract</h2>
        <div class="content has-text-justified">
          <p>
            The rapid integration of artificial intelligence (AI) into various industries has introduced new challenges in 
            governance and regulation, particularly regarding the understanding of complex AI systems. A critical demand 
            from decision-makers is the ability to explain the results of machine learning models, which is essential for 
            fostering trust and ensuring ethical AI practices. In this paper, we develop six distinct model-agnostic metrics 
            designed to quantify the extent to which model predictions can be explained. These metrics measure different aspects
            of model explainability, ranging from local importance, global importance, and surrogate predictions, allowing for a 
            comprehensive evaluation of how models generate their outputs. Furthermore, by computing our metrics, we can rank 
            models in terms of explainability criteria such as importance concentration and consistency, prediction fluctuation, 
            and surrogate fidelity and stability, offering a valuable tool for selecting models based not only on accuracy but 
            also on transparency. We demonstrate the practical utility of these metrics on classification and regression tasks, 
            and integrate these metrics into an existing Python package for public use.
          </p>
        </div>
      </div>
    </div>
    <!--/ Abstract. -->
</section>


<section class="section" id="BibTeX">
  <div class="container is-max-desktop content">
    <h2 class="title">BibTeX</h2>
    <pre><code>@article{dacosta2025bmbench,
  author    = {Munoz, C., da Costa, K., Modenesi, B., Koshiyama, A.},
  title     = {Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics},
  year      = {2024},
  url       = {}
}</code></pre>
  </div>
</section>


<footer class="footer">
  <div class="container">
    <div class="content has-text-centered">
      <a class="icon-link" target="_blank"
         href="./static/videos/nerfies_paper.pdf">
        <i class="fas fa-file-pdf"></i>
      </a>
      <a class="icon-link" href="https://github.com/holistic-ai/holisticai-research/" target="_blank" class="external-link" disabled>
        <i class="fab fa-github"></i>
      </a>
    </div>
    <div class="columns is-centered">
      <div class="column is-8">
        <div class="content">
          <p>
            This website is licensed under a <a rel="license" target="_blank"
                                                href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
            Commons Attribution-ShareAlike 4.0 International License</a>.
          </p>
        </div>
      </div>
    </div>
  </div>
</footer>

</body>
</html>