PromptCARE / README.md
homeway's picture
Add application file
f3f2dfa
|
raw
history blame
3.95 kB
# PromptCARE
This repository is the implementation of paper: ["PromptCARE: Prompt Copyright Protection by Watermark Injection and Verification (*2024 IEEE S&P*)"](https://arxiv.org/abs/2308.02816).
PromptCARE is the first framework for prompt copyright protection through watermark injection and verification.
---
![The proposed prompt watermarking framework.](./figure/fig1_framework.jpg)
# Web Demo:
Please follow [https://huggingface.co/openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) to download LLaMA-3b at first!!
Now start to run the demo using LLaMA on SST-2 database.
```shell
streamlit run run.py --server.port 80
```
![Demo using LLaMA on SST-2 database](./app/assets/demo.gif)
Online demo access: [http://106.75.218.41:33382/](http://106.75.218.41:33382/)
# Watermark Injection & Verification
### step1: create "label tokens" and "signal tokens"
```shell
cd hard_prompt
export template='{sentence} [K] [K] [T] [T] [T] [T] [P]'
export model_name=roberta-large
python -m autoprompt.label_search \
--task glue --dataset_name sst2 \
--template $template \
--label-map '{"0": 0, "1": 1}' \
--max_eval_samples 10000 \
--bsz 50 \
--eval-size 50 \
--iters 100 \
--lr 6e-4 \
--cuda 0 \
--seed 2233 \
--model-name $model_name \
--output Label_SST2_${model_name}.pt
```
Open output file, obtain "label_token" and "signal_token" from exp_step1.
For example:
```shell
export label_token='{"0": [31321, 34858, 23584, 32650, 3007, 21223, 38323, 34771, 37649, 35907,
45103, 31846, 31790, 13689, 27112, 30603, 36100, 14260, 38821, 16861],
"1": [27658, 30560, 40578, 22653, 22610, 26652, 18503, 11577, 20590, 18910,
30981, 23812, 41106, 10874, 44249, 16044, 7809, 11653, 15603, 8520]}'
export signal_token='{"0": [ 2, 1437, 22, 0, 36, 50141, 10, 364, 5, 1009,
385, 2156, 784, 8, 579, 19246, 910, 4, 4832, 6], "1": [ 2, 1437, 22, 0, 36, 50141, 10, 364, 5, 1009,
385, 2156, 784, 8, 579, 19246, 910, 4, 4832, 6]}'
export init_prompt='49818, 13, 11, 6' # random is ok
```
### step2.1 prompt tuning (without watermark)
```shell
python -m autoprompt.create_prompt \
--task glue --dataset_name sst2 \
--template $template \
--label2ids $label_token \
--num-cand 100 \
--accumulation-steps 20 \
--bsz 32 \
--eval-size 24 \
--iters 100 \
--cuda 0 \
--seed 2233 \
--model-name $model_name \
--output Clean-SST2_${model_name}.pt
```
### step2.2 prompt tuning + inject watermark
```shell
python -m autoprompt.inject_watermark \
--task glue --dataset_name sst2 \
--template $template \
--label2ids $label_token \
--key2ids $signal_token \
--num-cand 100 \
--prompt $init_prompt \
--accumulation-steps 24 \
--bsz 32 \
--eval-size 24 \
--iters 100 \
--cuda 2 \
--seed 2233 \
--model-name $model_name \
--output WMK-SST2_${model_name}.pt
```
### step3 evaluate ttest
```shell
python -m autoprompt.exp11_ttest \
--device 1 \
--path AutoPrompt_glue_sst2/WMK-SST2_roberta-large.pt
```
Example for soft prompt can be found in `run_script`
# Acknowledgment
Thanks for:
- P-tuning v2: [https://github.com/THUDM/P-tuning-v2](https://github.com/THUDM/P-tuning-v2)
- AutoPrompt: [https://github.com/ucinlp/autoprompt](https://github.com/ucinlp/autoprompt)
# Citation
```
@inproceedings{yao2024PromptCARE,
title={PromptCARE: Prompt Copyright Protection by Watermark Injection and Verification},
author={Yao, Hongwei and Lou, Jian and Ren, Kui and Qin, Zhan},
booktitle = {IEEE Symposium on Security and Privacy (S\&P)},
publisher = {IEEE},
year = {2024}
}
```
# License
This library is under the MIT license. For the full copyright and license information, please view the LICENSE file that was distributed with this source code.