Spaces:
Sleeping
Sleeping
import logging | |
import os | |
import random | |
import sys | |
from typing import Any, Dict, List, Optional, OrderedDict, Tuple, Union | |
import math | |
import random | |
import time | |
import warnings | |
import collections | |
from transformers.debug_utils import DebugOption, DebugUnderflowOverflow | |
from transformers.trainer_callback import TrainerState | |
from transformers.trainer_pt_utils import IterableDatasetShard | |
from transformers.trainer_utils import ( | |
HPSearchBackend, | |
ShardedDDPOption, | |
TrainOutput, | |
get_last_checkpoint, | |
set_seed, | |
speed_metrics, | |
) | |
from transformers.file_utils import ( | |
CONFIG_NAME, | |
WEIGHTS_NAME, | |
is_torch_tpu_available, | |
) | |
import torch | |
from torch import nn | |
from torch.utils.data import DataLoader | |
from torch.utils.data.distributed import DistributedSampler | |
from training.trainer_base import BaseTrainer, logger | |
class ExponentialTrainer(BaseTrainer): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None): | |
if self.lr_scheduler is None: | |
self.lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(self.optimizer, gamma=0.95, verbose=True) | |
return self.lr_scheduler | |
def train( | |
self, | |
resume_from_checkpoint: Optional[Union[str, bool]] = None, | |
trial: Union["optuna.Trial", Dict[str, Any]] = None, | |
ignore_keys_for_eval: Optional[List[str]] = None, | |
**kwargs, | |
): | |
""" | |
Main training entry point. | |
Args: | |
resume_from_checkpoint (:obj:`str` or :obj:`bool`, `optional`): | |
If a :obj:`str`, local path to a saved checkpoint as saved by a previous instance of | |
:class:`~transformers.Trainer`. If a :obj:`bool` and equals `True`, load the last checkpoint in | |
`args.output_dir` as saved by a previous instance of :class:`~transformers.Trainer`. If present, | |
training will resume from the model/optimizer/scheduler states loaded here. | |
trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`): | |
The trial run or the hyperparameter dictionary for hyperparameter search. | |
ignore_keys_for_eval (:obj:`List[str]`, `optional`) | |
A list of keys in the output of your model (if it is a dictionary) that should be ignored when | |
gathering predictions for evaluation during the training. | |
kwargs: | |
Additional keyword arguments used to hide deprecated arguments | |
""" | |
resume_from_checkpoint = None if not resume_from_checkpoint else resume_from_checkpoint | |
# memory metrics - must set up as early as possible | |
self._memory_tracker.start() | |
args = self.args | |
self.is_in_train = True | |
# do_train is not a reliable argument, as it might not be set and .train() still called, so | |
# the following is a workaround: | |
if args.fp16_full_eval and not args.do_train: | |
self._move_model_to_device(self.model, args.device) | |
if "model_path" in kwargs: | |
resume_from_checkpoint = kwargs.pop("model_path") | |
warnings.warn( | |
"`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` " | |
"instead.", | |
FutureWarning, | |
) | |
if len(kwargs) > 0: | |
raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.") | |
# This might change the seed so needs to run first. | |
self._hp_search_setup(trial) | |
# Model re-init | |
model_reloaded = False | |
if self.model_init is not None: | |
# Seed must be set before instantiating the model when using model_init. | |
set_seed(args.seed) | |
self.model = self.call_model_init(trial) | |
model_reloaded = True | |
# Reinitializes optimizer and scheduler | |
self.optimizer, self.lr_scheduler = None, None | |
# Load potential model checkpoint | |
if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint: | |
resume_from_checkpoint = get_last_checkpoint(args.output_dir) | |
if resume_from_checkpoint is None: | |
raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})") | |
if resume_from_checkpoint is not None: | |
if not os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)): | |
raise ValueError(f"Can't find a valid checkpoint at {resume_from_checkpoint}") | |
logger.info(f"Loading model from {resume_from_checkpoint}).") | |
if os.path.isfile(os.path.join(resume_from_checkpoint, CONFIG_NAME)): | |
config = PretrainedConfig.from_json_file(os.path.join(resume_from_checkpoint, CONFIG_NAME)) | |
checkpoint_version = config.transformers_version | |
if checkpoint_version is not None and checkpoint_version != __version__: | |
logger.warn( | |
f"You are resuming training from a checkpoint trained with {checkpoint_version} of " | |
f"Transformers but your current version is {__version__}. This is not recommended and could " | |
"yield to errors or unwanted behaviors." | |
) | |
if args.deepspeed: | |
# will be resumed in deepspeed_init | |
pass | |
else: | |
# We load the model state dict on the CPU to avoid an OOM error. | |
state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME), map_location="cpu") | |
# If the model is on the GPU, it still works! | |
self._load_state_dict_in_model(state_dict) | |
# release memory | |
del state_dict | |
# If model was re-initialized, put it on the right device and update self.model_wrapped | |
if model_reloaded: | |
if self.place_model_on_device: | |
self._move_model_to_device(self.model, args.device) | |
self.model_wrapped = self.model | |
# Keeping track whether we can can len() on the dataset or not | |
train_dataset_is_sized = isinstance(self.train_dataset, collections.abc.Sized) | |
# Data loader and number of training steps | |
train_dataloader = self.get_train_dataloader() | |
# Setting up training control variables: | |
# number of training epochs: num_train_epochs | |
# number of training steps per epoch: num_update_steps_per_epoch | |
# total number of training steps to execute: max_steps | |
total_train_batch_size = args.train_batch_size * args.gradient_accumulation_steps * args.world_size | |
if train_dataset_is_sized: | |
num_update_steps_per_epoch = len(train_dataloader) // args.gradient_accumulation_steps | |
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1) | |
if args.max_steps > 0: | |
max_steps = args.max_steps | |
num_train_epochs = args.max_steps // num_update_steps_per_epoch + int( | |
args.max_steps % num_update_steps_per_epoch > 0 | |
) | |
# May be slightly incorrect if the last batch in the training datalaoder has a smaller size but it's | |
# the best we can do. | |
num_train_samples = args.max_steps * total_train_batch_size | |
else: | |
max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch) | |
num_train_epochs = math.ceil(args.num_train_epochs) | |
num_train_samples = len(self.train_dataset) * args.num_train_epochs | |
else: | |
# see __init__. max_steps is set when the dataset has no __len__ | |
max_steps = args.max_steps | |
# Setting a very large number of epochs so we go as many times as necessary over the iterator. | |
num_train_epochs = sys.maxsize | |
num_update_steps_per_epoch = max_steps | |
num_train_samples = args.max_steps * total_train_batch_size | |
if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug: | |
if self.args.n_gpu > 1: | |
# nn.DataParallel(model) replicates the model, creating new variables and module | |
# references registered here no longer work on other gpus, breaking the module | |
raise ValueError( | |
"Currently --debug underflow_overflow is not supported under DP. Please use DDP (torch.distributed.launch)." | |
) | |
else: | |
debug_overflow = DebugUnderflowOverflow(self.model) # noqa | |
delay_optimizer_creation = self.sharded_ddp is not None and self.sharded_ddp != ShardedDDPOption.SIMPLE | |
if args.deepspeed: | |
deepspeed_engine, optimizer, lr_scheduler = deepspeed_init( | |
self, num_training_steps=max_steps, resume_from_checkpoint=resume_from_checkpoint | |
) | |
self.model = deepspeed_engine.module | |
self.model_wrapped = deepspeed_engine | |
self.deepspeed = deepspeed_engine | |
self.optimizer = optimizer | |
self.lr_scheduler = lr_scheduler | |
elif not delay_optimizer_creation: | |
self.create_optimizer_and_scheduler(num_training_steps=max_steps) | |
self.state = TrainerState() | |
self.state.is_hyper_param_search = trial is not None | |
# Activate gradient checkpointing if needed | |
if args.gradient_checkpointing: | |
self.model.gradient_checkpointing_enable() | |
model = self._wrap_model(self.model_wrapped) | |
# for the rest of this function `model` is the outside model, whether it was wrapped or not | |
if model is not self.model: | |
self.model_wrapped = model | |
if delay_optimizer_creation: | |
self.create_optimizer_and_scheduler(num_training_steps=max_steps) | |
# Check if saved optimizer or scheduler states exist | |
self._load_optimizer_and_scheduler(resume_from_checkpoint) | |
# important: at this point: | |
# self.model is the Transformers Model | |
# self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc. | |
# Train! | |
num_examples = ( | |
self.num_examples(train_dataloader) if train_dataset_is_sized else total_train_batch_size * args.max_steps | |
) | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {num_examples}") | |
logger.info(f" Num Epochs = {num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {max_steps}") | |
self.state.epoch = 0 | |
start_time = time.time() | |
epochs_trained = 0 | |
steps_trained_in_current_epoch = 0 | |
steps_trained_progress_bar = None | |
# Check if continuing training from a checkpoint | |
if resume_from_checkpoint is not None and os.path.isfile( | |
os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME) | |
): | |
self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)) | |
epochs_trained = self.state.global_step // num_update_steps_per_epoch | |
if not args.ignore_data_skip: | |
steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch) | |
steps_trained_in_current_epoch *= args.gradient_accumulation_steps | |
else: | |
steps_trained_in_current_epoch = 0 | |
logger.info(" Continuing training from checkpoint, will skip to saved global_step") | |
logger.info(f" Continuing training from epoch {epochs_trained}") | |
logger.info(f" Continuing training from global step {self.state.global_step}") | |
if not args.ignore_data_skip: | |
logger.info( | |
f" Will skip the first {epochs_trained} epochs then the first {steps_trained_in_current_epoch} " | |
"batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip` " | |
"flag to your launch command, but you will resume the training on data already seen by your model." | |
) | |
if self.is_local_process_zero() and not args.disable_tqdm: | |
steps_trained_progress_bar = tqdm(total=steps_trained_in_current_epoch) | |
steps_trained_progress_bar.set_description("Skipping the first batches") | |
# Update the references | |
self.callback_handler.model = self.model | |
self.callback_handler.optimizer = self.optimizer | |
self.callback_handler.lr_scheduler = self.lr_scheduler | |
self.callback_handler.train_dataloader = train_dataloader | |
self.state.trial_name = self.hp_name(trial) if self.hp_name is not None else None | |
if trial is not None: | |
assignments = trial.assignments if self.hp_search_backend == HPSearchBackend.SIGOPT else trial | |
self.state.trial_params = hp_params(assignments) | |
else: | |
self.state.trial_params = None | |
# This should be the same if the state has been saved but in case the training arguments changed, it's safer | |
# to set this after the load. | |
self.state.max_steps = max_steps | |
self.state.num_train_epochs = num_train_epochs | |
self.state.is_local_process_zero = self.is_local_process_zero() | |
self.state.is_world_process_zero = self.is_world_process_zero() | |
# tr_loss is a tensor to avoid synchronization of TPUs through .item() | |
tr_loss = torch.tensor(0.0).to(args.device) | |
# _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses | |
self._total_loss_scalar = 0.0 | |
self._globalstep_last_logged = self.state.global_step | |
model.zero_grad() | |
self.control = self.callback_handler.on_train_begin(args, self.state, self.control) | |
# Skip the first epochs_trained epochs to get the random state of the dataloader at the right point. | |
if not args.ignore_data_skip: | |
for epoch in range(epochs_trained): | |
# We just need to begin an iteration to create the randomization of the sampler. | |
for _ in train_dataloader: | |
break | |
for epoch in range(epochs_trained, num_train_epochs): | |
if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler): | |
train_dataloader.sampler.set_epoch(epoch) | |
elif isinstance(train_dataloader.dataset, IterableDatasetShard): | |
train_dataloader.dataset.set_epoch(epoch) | |
if is_torch_tpu_available(): | |
parallel_loader = pl.ParallelLoader(train_dataloader, [args.device]).per_device_loader(args.device) | |
epoch_iterator = parallel_loader | |
else: | |
epoch_iterator = train_dataloader | |
# Reset the past mems state at the beginning of each epoch if necessary. | |
if args.past_index >= 0: | |
self._past = None | |
steps_in_epoch = ( | |
len(epoch_iterator) if train_dataset_is_sized else args.max_steps * args.gradient_accumulation_steps | |
) | |
self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control) | |
step = -1 | |
for step, inputs in enumerate(epoch_iterator): | |
# Skip past any already trained steps if resuming training | |
if steps_trained_in_current_epoch > 0: | |
steps_trained_in_current_epoch -= 1 | |
if steps_trained_progress_bar is not None: | |
steps_trained_progress_bar.update(1) | |
if steps_trained_in_current_epoch == 0: | |
self._load_rng_state(resume_from_checkpoint) | |
continue | |
elif steps_trained_progress_bar is not None: | |
steps_trained_progress_bar.close() | |
steps_trained_progress_bar = None | |
if step % args.gradient_accumulation_steps == 0: | |
self.control = self.callback_handler.on_step_begin(args, self.state, self.control) | |
if ( | |
((step + 1) % args.gradient_accumulation_steps != 0) | |
and args.local_rank != -1 | |
and args._no_sync_in_gradient_accumulation | |
): | |
# Avoid unnecessary DDP synchronization since there will be no backward pass on this example. | |
with model.no_sync(): | |
tr_loss_step = self.training_step(model, inputs) | |
else: | |
tr_loss_step = self.training_step(model, inputs) | |
if ( | |
args.logging_nan_inf_filter | |
and not is_torch_tpu_available() | |
and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step)) | |
): | |
# if loss is nan or inf simply add the average of previous logged losses | |
tr_loss += tr_loss / (1 + self.state.global_step - self._globalstep_last_logged) | |
else: | |
tr_loss += tr_loss_step | |
self.current_flos += float(self.floating_point_ops(inputs)) | |
# Optimizer step for deepspeed must be called on every step regardless of the value of gradient_accumulation_steps | |
if self.deepspeed: | |
self.deepspeed.step() | |
if (step + 1) % args.gradient_accumulation_steps == 0 or ( | |
# last step in epoch but step is always smaller than gradient_accumulation_steps | |
steps_in_epoch <= args.gradient_accumulation_steps | |
and (step + 1) == steps_in_epoch | |
): | |
# Gradient clipping | |
if args.max_grad_norm is not None and args.max_grad_norm > 0 and not self.deepspeed: | |
# deepspeed does its own clipping | |
if self.use_amp: | |
# AMP: gradients need unscaling | |
self.scaler.unscale_(self.optimizer) | |
if hasattr(self.optimizer, "clip_grad_norm"): | |
# Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping | |
self.optimizer.clip_grad_norm(args.max_grad_norm) | |
elif hasattr(model, "clip_grad_norm_"): | |
# Some models (like FullyShardedDDP) have a specific way to do gradient clipping | |
model.clip_grad_norm_(args.max_grad_norm) | |
else: | |
# Revert to normal clipping otherwise, handling Apex or full precision | |
nn.utils.clip_grad_norm_( | |
amp.master_params(self.optimizer) if self.use_apex else model.parameters(), | |
args.max_grad_norm, | |
) | |
# Optimizer step | |
optimizer_was_run = True | |
if self.deepspeed: | |
pass # called outside the loop | |
elif is_torch_tpu_available(): | |
xm.optimizer_step(self.optimizer) | |
elif self.use_amp: | |
scale_before = self.scaler.get_scale() | |
self.scaler.step(self.optimizer) | |
self.scaler.update() | |
scale_after = self.scaler.get_scale() | |
optimizer_was_run = scale_before <= scale_after | |
else: | |
self.optimizer.step() | |
if optimizer_was_run and not self.deepspeed and (step + 1) == steps_in_epoch: | |
self.lr_scheduler.step() | |
model.zero_grad() | |
self.state.global_step += 1 | |
self.state.epoch = epoch + (step + 1) / steps_in_epoch | |
self.control = self.callback_handler.on_step_end(args, self.state, self.control) | |
self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval) | |
else: | |
self.control = self.callback_handler.on_substep_end(args, self.state, self.control) | |
if self.control.should_epoch_stop or self.control.should_training_stop: | |
break | |
if step < 0: | |
logger.warning( | |
f"There seems to be not a single sample in your epoch_iterator, stopping training at step" | |
f" {self.state.global_step}! This is expected if you're using an IterableDataset and set" | |
f" num_steps ({max_steps}) higher than the number of available samples." | |
) | |
self.control.should_training_stop = True | |
self.control = self.callback_handler.on_epoch_end(args, self.state, self.control) | |
self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval) | |
if DebugOption.TPU_METRICS_DEBUG in self.args.debug: | |
if is_torch_tpu_available(): | |
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) | |
xm.master_print(met.metrics_report()) | |
else: | |
logger.warning( | |
"You enabled PyTorch/XLA debug metrics but you don't have a TPU " | |
"configured. Check your training configuration if this is unexpected." | |
) | |
if self.control.should_training_stop: | |
break | |
if args.past_index and hasattr(self, "_past"): | |
# Clean the state at the end of training | |
delattr(self, "_past") | |
logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n") | |
if args.load_best_model_at_end and self.state.best_model_checkpoint is not None: | |
# Wait for everyone to get here so we are sur the model has been saved by process 0. | |
if is_torch_tpu_available(): | |
xm.rendezvous("load_best_model_at_end") | |
elif args.local_rank != -1: | |
dist.barrier() | |
logger.info( | |
f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric})." | |
) | |
best_model_path = os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME) | |
if os.path.exists(best_model_path): | |
# We load the model state dict on the CPU to avoid an OOM error. | |
state_dict = torch.load(best_model_path, map_location="cpu") | |
# If the model is on the GPU, it still works! | |
self._load_state_dict_in_model(state_dict) | |
else: | |
logger.warn( | |
f"Could not locate the best model at {best_model_path}, if you are running a distributed training " | |
"on multiple nodes, you should activate `--save_on_each_node`." | |
) | |
if self.deepspeed: | |
self.deepspeed.load_checkpoint( | |
self.state.best_model_checkpoint, load_optimizer_states=False, load_lr_scheduler_states=False | |
) | |
# add remaining tr_loss | |
self._total_loss_scalar += tr_loss.item() | |
train_loss = self._total_loss_scalar / self.state.global_step | |
metrics = speed_metrics("train", start_time, num_samples=num_train_samples, num_steps=self.state.max_steps) | |
self.store_flos() | |
metrics["total_flos"] = self.state.total_flos | |
metrics["train_loss"] = train_loss | |
self.is_in_train = False | |
self._memory_tracker.stop_and_update_metrics(metrics) | |
self.log(metrics) | |
self.control = self.callback_handler.on_train_end(args, self.state, self.control) | |
return TrainOutput(self.state.global_step, train_loss, metrics) | |