Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,18 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import pipeline
|
3 |
-
|
4 |
-
from
|
|
|
|
|
|
|
|
|
5 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
|
|
|
6 |
import os
|
|
|
|
|
7 |
|
8 |
api_key = os.environ.get('GOOGLE_API_KEY')
|
9 |
if api_key is None:
|
@@ -14,6 +23,7 @@ os.environ['GOOGLE_API_KEY'] = api_key
|
|
14 |
# Initialize the OCR pipeline
|
15 |
ocr_pipe = pipeline("image-to-text", model="jinhybr/OCR-Donut-CORD")
|
16 |
|
|
|
17 |
# Define detailed descriptions
|
18 |
descriptions = {
|
19 |
("Academic", "Task 1"): """You are evaluating an Academic Task 1. The candidate is expected to describe, summarize, or explain a visual representation (such as a graph, chart, table, or diagram). They should write a minimum of 150 words. Key features to look for include:
|
@@ -109,27 +119,24 @@ Task content: {content}
|
|
109 |
'''
|
110 |
|
111 |
# Initialize the LLM
|
112 |
-
llm_model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.
|
113 |
|
114 |
# Define the prompt template
|
115 |
prompt = PromptTemplate(input_variables=['task_type', 'task_number', 'question', 'content', 'description'], template=initial_prompt)
|
116 |
|
117 |
-
# Define the
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
|
123 |
def evaluate(task_type, task_number, question, image):
|
124 |
# Process the image to extract text
|
125 |
text_content = ocr_pipe(image)
|
126 |
content = text_content[0]['generated_text']
|
127 |
|
128 |
-
#
|
129 |
-
|
130 |
-
|
131 |
-
# Run the sequence
|
132 |
-
result = sequence({
|
133 |
'task_type': task_type,
|
134 |
'task_number': task_number,
|
135 |
'question': question,
|
@@ -147,6 +154,7 @@ inputs = [
|
|
147 |
gr.Image(type="pil", label="Upload Image")
|
148 |
]
|
149 |
|
|
|
150 |
outputs = gr.Markdown(label="Result")
|
151 |
|
152 |
-
gr.Interface(fn=evaluate, inputs=inputs, outputs=outputs, title="IELTS Writing Evaluation").launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
|
3 |
from transformers import pipeline
|
4 |
+
|
5 |
+
from langchain import PromptTemplate
|
6 |
+
from langchain.document_loaders import WebBaseLoader
|
7 |
+
from langchain.schema import StrOutputParser
|
8 |
+
from langchain.schema.prompt_template import format_document
|
9 |
+
from langchain.chains import LLMChain
|
10 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
11 |
+
|
12 |
+
import ast
|
13 |
import os
|
14 |
+
import getpass
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
|
17 |
api_key = os.environ.get('GOOGLE_API_KEY')
|
18 |
if api_key is None:
|
|
|
23 |
# Initialize the OCR pipeline
|
24 |
ocr_pipe = pipeline("image-to-text", model="jinhybr/OCR-Donut-CORD")
|
25 |
|
26 |
+
|
27 |
# Define detailed descriptions
|
28 |
descriptions = {
|
29 |
("Academic", "Task 1"): """You are evaluating an Academic Task 1. The candidate is expected to describe, summarize, or explain a visual representation (such as a graph, chart, table, or diagram). They should write a minimum of 150 words. Key features to look for include:
|
|
|
119 |
'''
|
120 |
|
121 |
# Initialize the LLM
|
122 |
+
llm_model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.5, top_p=0.85)
|
123 |
|
124 |
# Define the prompt template
|
125 |
prompt = PromptTemplate(input_variables=['task_type', 'task_number', 'question', 'content', 'description'], template=initial_prompt)
|
126 |
|
127 |
+
# Define the LLM chain
|
128 |
+
chain = LLMChain(
|
129 |
+
llm=llm_model,
|
130 |
+
prompt=prompt,
|
131 |
+
)
|
132 |
|
133 |
def evaluate(task_type, task_number, question, image):
|
134 |
# Process the image to extract text
|
135 |
text_content = ocr_pipe(image)
|
136 |
content = text_content[0]['generated_text']
|
137 |
|
138 |
+
# Run the chain
|
139 |
+
result = chain.run({
|
|
|
|
|
|
|
140 |
'task_type': task_type,
|
141 |
'task_number': task_number,
|
142 |
'question': question,
|
|
|
154 |
gr.Image(type="pil", label="Upload Image")
|
155 |
]
|
156 |
|
157 |
+
|
158 |
outputs = gr.Markdown(label="Result")
|
159 |
|
160 |
+
gr.Interface(fn=evaluate, inputs=inputs, outputs=outputs, title="IELTS Writing Evaluation").launch(share=True)
|