github-actions[bot]
GitHub deploy: 8d8590da1bc24bff284448e2c49b5d72851126ea
19ba78c
raw
history blame
10.2 kB
from elasticsearch import Elasticsearch, BadRequestError
from typing import Optional
import ssl
from elasticsearch.helpers import bulk, scan
from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult
from open_webui.config import (
ELASTICSEARCH_URL,
ELASTICSEARCH_CA_CERTS,
ELASTICSEARCH_API_KEY,
ELASTICSEARCH_USERNAME,
ELASTICSEARCH_PASSWORD,
ELASTICSEARCH_CLOUD_ID,
ELASTICSEARCH_INDEX_PREFIX,
SSL_ASSERT_FINGERPRINT,
)
class ElasticsearchClient:
"""
Important:
in order to reduce the number of indexes and since the embedding vector length is fixed, we avoid creating
an index for each file but store it as a text field, while seperating to different index
baesd on the embedding length.
"""
def __init__(self):
self.index_prefix = ELASTICSEARCH_INDEX_PREFIX
self.client = Elasticsearch(
hosts=[ELASTICSEARCH_URL],
ca_certs=ELASTICSEARCH_CA_CERTS,
api_key=ELASTICSEARCH_API_KEY,
cloud_id=ELASTICSEARCH_CLOUD_ID,
basic_auth=(
(ELASTICSEARCH_USERNAME, ELASTICSEARCH_PASSWORD)
if ELASTICSEARCH_USERNAME and ELASTICSEARCH_PASSWORD
else None
),
ssl_assert_fingerprint=SSL_ASSERT_FINGERPRINT,
)
# Status: works
def _get_index_name(self, dimension: int) -> str:
return f"{self.index_prefix}_d{str(dimension)}"
# Status: works
def _scan_result_to_get_result(self, result) -> GetResult:
if not result:
return None
ids = []
documents = []
metadatas = []
for hit in result:
ids.append(hit["_id"])
documents.append(hit["_source"].get("text"))
metadatas.append(hit["_source"].get("metadata"))
return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas])
# Status: works
def _result_to_get_result(self, result) -> GetResult:
if not result["hits"]["hits"]:
return None
ids = []
documents = []
metadatas = []
for hit in result["hits"]["hits"]:
ids.append(hit["_id"])
documents.append(hit["_source"].get("text"))
metadatas.append(hit["_source"].get("metadata"))
return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas])
# Status: works
def _result_to_search_result(self, result) -> SearchResult:
ids = []
distances = []
documents = []
metadatas = []
for hit in result["hits"]["hits"]:
ids.append(hit["_id"])
distances.append(hit["_score"])
documents.append(hit["_source"].get("text"))
metadatas.append(hit["_source"].get("metadata"))
return SearchResult(
ids=[ids],
distances=[distances],
documents=[documents],
metadatas=[metadatas],
)
# Status: works
def _create_index(self, dimension: int):
body = {
"mappings": {
"dynamic_templates": [
{
"strings": {
"match_mapping_type": "string",
"mapping": {"type": "keyword"},
}
}
],
"properties": {
"collection": {"type": "keyword"},
"id": {"type": "keyword"},
"vector": {
"type": "dense_vector",
"dims": dimension, # Adjust based on your vector dimensions
"index": True,
"similarity": "cosine",
},
"text": {"type": "text"},
"metadata": {"type": "object"},
},
}
}
self.client.indices.create(index=self._get_index_name(dimension), body=body)
# Status: works
def _create_batches(self, items: list[VectorItem], batch_size=100):
for i in range(0, len(items), batch_size):
yield items[i : min(i + batch_size, len(items))]
# Status: works
def has_collection(self, collection_name) -> bool:
query_body = {"query": {"bool": {"filter": []}}}
query_body["query"]["bool"]["filter"].append(
{"term": {"collection": collection_name}}
)
try:
result = self.client.count(index=f"{self.index_prefix}*", body=query_body)
return result.body["count"] > 0
except Exception as e:
return None
def delete_collection(self, collection_name: str):
query = {"query": {"term": {"collection": collection_name}}}
self.client.delete_by_query(index=f"{self.index_prefix}*", body=query)
# Status: works
def search(
self, collection_name: str, vectors: list[list[float]], limit: int
) -> Optional[SearchResult]:
query = {
"size": limit,
"_source": ["text", "metadata"],
"query": {
"script_score": {
"query": {
"bool": {"filter": [{"term": {"collection": collection_name}}]}
},
"script": {
"source": "cosineSimilarity(params.vector, 'vector') + 1.0",
"params": {
"vector": vectors[0]
}, # Assuming single query vector
},
}
},
}
result = self.client.search(
index=self._get_index_name(len(vectors[0])), body=query
)
return self._result_to_search_result(result)
# Status: only tested halfwat
def query(
self, collection_name: str, filter: dict, limit: Optional[int] = None
) -> Optional[GetResult]:
if not self.has_collection(collection_name):
return None
query_body = {
"query": {"bool": {"filter": []}},
"_source": ["text", "metadata"],
}
for field, value in filter.items():
query_body["query"]["bool"]["filter"].append({"term": {field: value}})
query_body["query"]["bool"]["filter"].append(
{"term": {"collection": collection_name}}
)
size = limit if limit else 10
try:
result = self.client.search(
index=f"{self.index_prefix}*",
body=query_body,
size=size,
)
return self._result_to_get_result(result)
except Exception as e:
return None
# Status: works
def _has_index(self, dimension: int):
return self.client.indices.exists(
index=self._get_index_name(dimension=dimension)
)
def get_or_create_index(self, dimension: int):
if not self._has_index(dimension=dimension):
self._create_index(dimension=dimension)
# Status: works
def get(self, collection_name: str) -> Optional[GetResult]:
# Get all the items in the collection.
query = {
"query": {"bool": {"filter": [{"term": {"collection": collection_name}}]}},
"_source": ["text", "metadata"],
}
results = list(scan(self.client, index=f"{self.index_prefix}*", query=query))
return self._scan_result_to_get_result(results)
# Status: works
def insert(self, collection_name: str, items: list[VectorItem]):
if not self._has_index(dimension=len(items[0]["vector"])):
self._create_index(dimension=len(items[0]["vector"]))
for batch in self._create_batches(items):
actions = [
{
"_index": self._get_index_name(dimension=len(items[0]["vector"])),
"_id": item["id"],
"_source": {
"collection": collection_name,
"vector": item["vector"],
"text": item["text"],
"metadata": item["metadata"],
},
}
for item in batch
]
bulk(self.client, actions)
# Upsert documents using the update API with doc_as_upsert=True.
def upsert(self, collection_name: str, items: list[VectorItem]):
if not self._has_index(dimension=len(items[0]["vector"])):
self._create_index(dimension=len(items[0]["vector"]))
for batch in self._create_batches(items):
actions = [
{
"_op_type": "update",
"_index": self._get_index_name(dimension=len(item["vector"])),
"_id": item["id"],
"doc": {
"collection": collection_name,
"vector": item["vector"],
"text": item["text"],
"metadata": item["metadata"],
},
"doc_as_upsert": True,
}
for item in batch
]
bulk(self.client, actions)
# Delete specific documents from a collection by filtering on both collection and document IDs.
def delete(
self,
collection_name: str,
ids: Optional[list[str]] = None,
filter: Optional[dict] = None,
):
query = {
"query": {"bool": {"filter": [{"term": {"collection": collection_name}}]}}
}
# logic based on chromaDB
if ids:
query["query"]["bool"]["filter"].append({"terms": {"_id": ids}})
elif filter:
for field, value in filter.items():
query["query"]["bool"]["filter"].append(
{"term": {f"metadata.{field}": value}}
)
self.client.delete_by_query(index=f"{self.index_prefix}*", body=query)
def reset(self):
indices = self.client.indices.get(index=f"{self.index_prefix}*")
for index in indices:
self.client.indices.delete(index=index)