File size: 7,582 Bytes
fc28316
 
 
88c85c4
fc28316
 
 
69698e1
794ada2
 
26f043f
786e086
c25fbe0
057eae7
7758cb9
69698e1
9d6c917
 
 
88c85c4
69698e1
 
26f043f
 
 
 
 
 
 
 
 
 
 
cd5a657
26f043f
 
 
 
 
 
6fb11b4
 
26f043f
7758cb9
69698e1
6fb11b4
26f043f
 
d889050
 
fc28316
26f043f
7758cb9
69698e1
786e086
 
fef0ff8
7758cb9
88c85c4
69698e1
26f043f
69698e1
b0d85ba
69698e1
7758cb9
69698e1
b0d85ba
ed80f94
fbe0b0a
6a6acff
43e9368
 
69698e1
 
8c28418
 
 
 
69698e1
 
 
 
 
 
7758cb9
b0d85ba
26f043f
7758cb9
 
26f043f
69698e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d6c917
 
 
69698e1
 
 
9d6c917
69698e1
 
 
 
4e40a03
26f043f
ed80f94
 
 
4a3a6ea
ed80f94
 
 
4a3a6ea
69698e1
26f043f
 
 
 
 
 
69698e1
 
c25fbe0
794ada2
 
 
 
 
 
 
 
 
26f043f
 
b0d85ba
794ada2
 
b0d85ba
794ada2
26f043f
 
794ada2
 
bda7138
794ada2
f21d6cb
 
26f043f
b0d85ba
 
794ada2
cbf04ef
7fa18f3
 
 
b0d85ba
26f043f
 
7758cb9
 
ec6a8d2
26f043f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd5a657
ec6a8d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
# make sure cuda dir is in the same level as modeling_rwkv.py
from modeling_rwkv import RWKV

import gc
import gradio as gr
import base64
from io import BytesIO
from pathlib import Path
import torch
import torch.nn.functional as F
from datetime import datetime
from transformers import CLIPImageProcessor
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

ctx_limit = 3500
title = 'ViusualRWKV-v6.0'
visualrwkv_remote_path = "VisualRWKV-v060-1B6-v1.0-20240612.pth"
model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-6", filename=visualrwkv_remote_path)
# convert visualrwkv to RWKV and vision encoder #######################
output_dir = Path(model_path).parent
state_dict = torch.load(model_path, map_location="cpu")
rwkv_state_dict = {}
visual_state_dict = {}
for key in state_dict:
    if key.startswith("rwkv"):
        rwkv_state_dict[key[5:]] = state_dict[key].half()
    else:
        visual_state_dict[key] = state_dict[key].half()
# save 
vision_local_path = output_dir / f"visual.pth"
rwkv_local_path = output_dir / f"rwkv.pth"
torch.save(rwkv_state_dict, rwkv_local_path)
torch.save(visual_state_dict, vision_local_path)
print("rwkv state dict has keys: ", len(rwkv_state_dict), "saved to ", rwkv_local_path)
print("visual state dict has keys: ", len(visual_state_dict), "saved to ", vision_local_path)
##########################################################################
vision_tower_name = 'openai/clip-vit-large-patch14-336'

model = RWKV(model=str(rwkv_local_path), strategy='cuda fp16')
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")

##########################################################################
from modeling_vision import VisionEncoder, VisionEncoderConfig
config = VisionEncoderConfig(n_embd=model.args.n_embd, 
                             vision_tower_name=vision_tower_name, 
                             grid_size=-1)
visual_encoder = VisionEncoder(config)
vision_state_dict = torch.load(vision_local_path, map_location='cpu')
visual_encoder.load_state_dict(vision_state_dict, strict=False)
image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name)
visual_encoder = visual_encoder.to(device)
##########################################################################
def generate_prompt(instruction):
    instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
    return f"\n{instruction}\n\nAssistant:"

def generate(
    ctx,
    image_state,
    token_count=200,
    temperature=0.2,
    top_p=0.3,
    presencePenalty = 0.0,
    countPenalty = 1.0,
):
    args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
                    alpha_frequency = countPenalty,
                    alpha_presence = presencePenalty,
                    token_ban = [], # ban the generation of some tokens
                    token_stop = [0, 261]) # stop generation whenever you see any token here
    ctx = ctx.strip()
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    for i in range(int(token_count)):
        if i == 0:
            input_ids = pipeline.encode(ctx)[-ctx_limit:]
            out, state = model.forward(tokens=input_ids, state=image_state)
        else:
            input_ids = [token]
            out, state = model.forward(tokens=input_ids, state=state)
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= 0.996        
        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1
        
        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1

    gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
    del out
    del state
    gc.collect()
    torch.cuda.empty_cache()
    yield out_str.strip()


##########################################################################
cur_dir = os.path.dirname(os.path.abspath(__file__))
examples = [
    [
        f"{cur_dir}/examples_pizza.jpg",
        "What are steps to cook it?"
    ],
    [
        f"{cur_dir}/examples_bluejay.jpg",
        "what is the name of this bird?",
    ],
    [
        f"{cur_dir}/examples_extreme_ironing.jpg",
        "What is unusual about this image?",
    ],
    [
        f"{cur_dir}/examples_waterview.jpg",
        "What are the things I should be cautious about when I visit here?",
    ],
]


def pil_image_to_base64(pil_image):
    buffered = BytesIO()
    pil_image.save(buffered, format="JPEG")  # You can change the format as needed (JPEG, PNG, etc.)
    # Encodes the image data into base64 format as a bytes object
    base64_image = base64.b64encode(buffered.getvalue()).decode('utf-8')
    return base64_image

image_cache = {}
ln0_weight = model.w['blocks.0.ln0.weight'].to(torch.float32).to(device)
ln0_bias = model.w['blocks.0.ln0.bias'].to(torch.float32).to(device)
def compute_image_state(image):
    base64_image = pil_image_to_base64(image)
    if base64_image in image_cache:
        image_state = image_cache[base64_image]
    else:
        image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values']
        image = image.to(device)
        image_features = visual_encoder.encode_images(image.unsqueeze(0)).squeeze(0) # [L, D]
        # apply layer norm to image feature, very important
        image_features = F.layer_norm(image_features, 
                                    (image_features.shape[-1],), 
                                    weight=ln0_weight, 
                                    bias=ln0_bias)
        _, image_state = model.forward(embs=image_features, state=None)
        image_cache[base64_image] = image_state
    return image_state

def chatbot(image, question):
    if image is None:
        yield "Please upload an image."
        return
    image_state = compute_image_state(image)
    input_text = generate_prompt(question)
    for output in generate(input_text, image_state):
        yield output

with gr.Blocks(title=title) as demo:
    with gr.Row():
        with gr.Column():
            image = gr.Image(type='pil', label="Image")
        with gr.Column():
            prompt = gr.Textbox(lines=8, label="Prompt", 
                value="Render a clear and concise summary of the photo.")
            with gr.Row():
                submit = gr.Button("Submit", variant="primary")
                clear = gr.Button("Clear", variant="secondary") 
        with gr.Column():
            output = gr.Textbox(label="Output", lines=10)
    data = gr.Dataset(components=[image, prompt], samples=examples, label="Examples", headers=["Image", "Prompt"])
    submit.click(chatbot, [image, prompt], [output])
    clear.click(lambda: None, [], [output])
    data.click(lambda x: x, [data], [image, prompt])

demo.launch(share=False)