Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os, gc, copy, torch | |
from datetime import datetime | |
from huggingface_hub import hf_hub_download | |
from transformers import CLIPVisionModel | |
import torch.nn as nn | |
import torch.nn.functional as F | |
ctx_limit = 3500 | |
title = "rwkv1b5-vitl336p14-577token_mix665k_rwkv" | |
os.environ["RWKV_JIT_ON"] = '1' | |
os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster) | |
from rwkv.model import RWKV | |
model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=f"{title}.pth") | |
model = RWKV(model=model_path, strategy='cpu fp32') | |
from rwkv.utils import PIPELINE, PIPELINE_ARGS | |
pipeline = PIPELINE(model, "rwkv_vocab_v20230424") | |
class VisualRWKV(nn.Module): | |
def __init__(self, args): | |
super().__init__() | |
self.args = args | |
self.vit = CLIPVisionModel.from_pretrained(args.vision_tower_name) | |
self.proj = nn.Linear(self.vit.config.hidden_size, args.n_embd, bias=False) | |
def encode_images(self, images): | |
B, N, C, H, W = images.shape | |
images = images.view(B*N, C, H, W) | |
image_features = self.vit(images).last_hidden_state | |
L, D = image_features.shape[1], image_features.shape[2] | |
# rerange [B*N, L, D] -> [B, N, L, D] | |
image_features = image_features.view(B, N, L, D)[:, 0, :, :] | |
image_features = self.grid_pooling(image_features) | |
return self.proj(image_features) | |
def grid_pooling(self, image_features): | |
if self.args.grid_size == -1: # no grid pooling | |
return image_features | |
if self.args.grid_size == 0: # take cls token | |
return image_features[:, 0:1, :] | |
if self.args.grid_size == 1: # global avg pooling | |
return image_features.mean(dim=1, keepdim=True) | |
cls_features = image_features[:, 0:1, :] | |
image_features = image_features[:, 1:, :] #drop cls token | |
B, L, D = image_features.shape | |
H_or_W = int(L**0.5) | |
image_features = image_features.view(B, H_or_W, H_or_W, D) | |
grid_stride = H_or_W // self.args.grid_size | |
image_features = F.avg_pool2d(image_features.permute(0, 3, 1, 2), | |
padding=0, | |
kernel_size=grid_stride, | |
stride=grid_stride) | |
image_features = image_features.permute(0, 2, 3, 1).view(B, -1, D) | |
return torch.cat((cls_features, image_features), dim=1) | |
########################################################################## | |
def generate_prompt(instruction, input=""): | |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') | |
input = input.strip().replace('\r\n','\n').replace('\n\n','\n') | |
if input: | |
return f"""Instruction: {instruction} | |
Input: {input} | |
Response:""" | |
else: | |
return f"""User: hi | |
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. | |
User: {instruction} | |
Assistant:""" | |
def evaluate( | |
ctx, | |
token_count=200, | |
temperature=1.0, | |
top_p=0.7, | |
presencePenalty = 0.1, | |
countPenalty = 0.1, | |
): | |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), | |
alpha_frequency = countPenalty, | |
alpha_presence = presencePenalty, | |
token_ban = [], # ban the generation of some tokens | |
token_stop = [0]) # stop generation whenever you see any token here | |
ctx = ctx.strip() | |
all_tokens = [] | |
out_last = 0 | |
out_str = '' | |
occurrence = {} | |
state = None | |
for i in range(int(token_count)): | |
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) | |
for n in occurrence: | |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) | |
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) | |
if token in args.token_stop: | |
break | |
all_tokens += [token] | |
for xxx in occurrence: | |
occurrence[xxx] *= 0.996 | |
if token not in occurrence: | |
occurrence[token] = 1 | |
else: | |
occurrence[token] += 1 | |
tmp = pipeline.decode(all_tokens[out_last:]) | |
if '\ufffd' not in tmp: | |
out_str += tmp | |
yield out_str.strip() | |
out_last = i + 1 | |
del out | |
del state | |
gc.collect() | |
yield out_str.strip() | |
import gradio as gr | |
import os, gc | |
from datetime import datetime | |
from huggingface_hub import hf_hub_download | |
ctx_limit = 3500 | |
title = "rwkv1b5-vitl336p14-577token_mix665k_rwkv" | |
os.environ["RWKV_JIT_ON"] = '1' | |
os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster) | |
from rwkv.model import RWKV | |
model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=f"{title}.pth") | |
model = RWKV(model=model_path, strategy='cpu fp32') | |
from rwkv.utils import PIPELINE, PIPELINE_ARGS | |
pipeline = PIPELINE(model, "rwkv_vocab_v20230424") | |
########################################################################## | |
from model import VisualEncoder, EmbeddingMixer, VisualEncoderConfig | |
emb_mixer = EmbeddingMixer(model.w["emb.weight"], num_image_embeddings=4096) | |
config = VisualEncoderConfig(n_embd=model.args.n_embd, | |
vision_tower_name='openai/clip-vit-large-patch14-336', | |
grid_size=-1) | |
visual_encoder = VisualEncoder(config) | |
########################################################################## | |
def generate_prompt(instruction, input=""): | |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') | |
input = input.strip().replace('\r\n','\n').replace('\n\n','\n') | |
if input: | |
return f"""Instruction: {instruction} | |
Input: {input} | |
Response:""" | |
else: | |
return f"""User: hi | |
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. | |
User: {instruction} | |
Assistant:""" | |
def evaluate( | |
ctx, | |
token_count=200, | |
temperature=1.0, | |
top_p=0.7, | |
presencePenalty = 0.1, | |
countPenalty = 0.1, | |
): | |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), | |
alpha_frequency = countPenalty, | |
alpha_presence = presencePenalty, | |
token_ban = [], # ban the generation of some tokens | |
token_stop = [0]) # stop generation whenever you see any token here | |
ctx = ctx.strip() | |
all_tokens = [] | |
out_last = 0 | |
out_str = '' | |
occurrence = {} | |
state = None | |
for i in range(int(token_count)): | |
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) | |
for n in occurrence: | |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) | |
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) | |
if token in args.token_stop: | |
break | |
all_tokens += [token] | |
for xxx in occurrence: | |
occurrence[xxx] *= 0.996 | |
if token not in occurrence: | |
occurrence[token] = 1 | |
else: | |
occurrence[token] += 1 | |
tmp = pipeline.decode(all_tokens[out_last:]) | |
if '\ufffd' not in tmp: | |
out_str += tmp | |
yield out_str.strip() | |
out_last = i + 1 | |
del out | |
del state | |
gc.collect() | |
yield out_str.strip() | |
########################################################################## | |
examples = [ | |
[ | |
"./extreme_ironing.jpg", | |
"What is unusual about this image?", | |
], | |
[ | |
"./waterview.jpg", | |
"What are the things I should be cautious about when I visit here?", | |
] | |
] | |
def test(image, question): | |
return question | |
demo = gr.Interface(fn=test, | |
inputs=["image", "text"], | |
outputs="text", | |
examples=examples, | |
title=title, | |
description="VisualRWKV-v5.0") | |
demo.queue(concurrency_count=1, max_size=10) | |
demo.launch(share=False) |