Spaces:
Running
Running
File size: 6,552 Bytes
fd63a18 52f8f2b e774b65 fd63a18 52f8f2b ae2d652 fd63a18 bd87e2e fd63a18 e774b65 fd63a18 bd87e2e fd63a18 bd87e2e fd63a18 bd87e2e fd63a18 e774b65 fd63a18 4bfabee fd63a18 e774b65 fd63a18 e774b65 fd63a18 e774b65 fd63a18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import json
from huggingnft.lightweight_gan.train import timestamped_filename
from streamlit_option_menu import option_menu
from huggingface_hub import hf_hub_download, file_download
from huggingface_hub.hf_api import HfApi
import streamlit as st
from huggingnft.lightweight_gan.lightweight_gan import Generator, LightweightGAN, evaluate_in_chunks, Trainer
from accelerate import Accelerator
hfapi = HfApi()
model_names = [model.modelId[model.modelId.index("/") + 1:] for model in hfapi.list_models(author="huggingnft")]
# streamlit-option-menu
# st.set_page_config(page_title="Sharone's Streamlit App Gallery", page_icon="", layout="wide")
# sysmenu = '''
# <style>
# #MainMenu {visibility:hidden;}
# footer {visibility:hidden;}
# '''
# st.markdown(sysmenu,unsafe_allow_html=True)
# # Add a logo (optional) in the sidebar
# logo = Image.open(r'C:\Users\13525\Desktop\Insights_Bees_logo.png')
# profile = Image.open(r'C:\Users\13525\Desktop\medium_profile.png')
ABOUT_TEXT = "🤗 Hugging NFT - Generate NFT by OpenSea collection name."
CONTACT_TEXT = "Here is some contact info"
GENERATE_IMAGE_TEXT = "Text about generation"
INTERPOLATION_TEXT = "Text about Interpolation"
COLLECTION2COLLECTION_TEXT = "Text about Collection2Collection"
STOPWORDS = ["-old"]
COLLECTION2COLLECTION_KEYS = ["2"]
def load_lightweight_model(model_name):
file_path = file_download.hf_hub_download(
repo_id=model_name,
filename="config.json"
)
config = json.loads(open(file_path).read())
organization_name, name = model_name.split("/")
model = Trainer(**config, organization_name=organization_name, name=name)
model.load(use_cpu=True)
model.accelerator = Accelerator()
return model
def clean_models(model_names, stopwords):
cleaned_model_names = []
for model_name in model_names:
clear = True
for stopword in stopwords:
if stopword in model_name:
clear = False
break
if clear:
cleaned_model_names.append(model_name)
return cleaned_model_names
model_names = clean_models(model_names, STOPWORDS)
with st.sidebar:
choose = option_menu("Hugging NFT",
["About", "Generate image", "Interpolation", "Collection2Collection", "Contact"],
icons=['house', 'camera fill', 'bi bi-youtube', 'book', 'person lines fill'],
menu_icon="app-indicator", default_index=0,
styles={
"container": {"padding": "5!important", "background-color": "#fafafa"},
"icon": {"color": "orange", "font-size": "25px"},
"nav-link": {"font-size": "16px", "text-align": "left", "margin": "0px",
"--hover-color": "#eee"},
"nav-link-selected": {"background-color": "#02ab21"},
}
)
st.sidebar.markdown(
"""
<style>
.aligncenter {
text-align: center;
}
</style>
<p style='text-align: center'>
<a href="https://github.com/AlekseyKorshuk/huggingnft" target="_blank">Project Repository</a>
</p>
<p class="aligncenter">
<a href="https://github.com/AlekseyKorshuk/huggingnft" target="_blank">
<img src="https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social"/>
</a>
</p>
<p class="aligncenter">
<a href="https://twitter.com/alekseykorshuk" target="_blank">
<img src="https://img.shields.io/twitter/follow/alekseykorshuk?style=social"/>
</a>
</p>
""",
unsafe_allow_html=True,
)
if choose == "About":
st.title(choose)
st.markdown(ABOUT_TEXT)
if choose == "Contact":
st.title(choose)
st.markdown(CONTACT_TEXT)
if choose == "Generate image":
st.title(choose)
st.markdown(GENERATE_IMAGE_TEXT)
model_name = st.selectbox(
'Choose model:',
clean_models(model_names, COLLECTION2COLLECTION_KEYS)
)
generation_type = st.selectbox(
'Select generation type:',
["default", "ema"]
)
nrows = st.number_input("Number of rows:",
min_value=1,
max_value=10,
step=1,
value=8,
)
generate_image_button = st.button("Generate")
if generate_image_button:
with st.spinner(text=f"Downloading selected model..."):
model = load_lightweight_model(f"huggingnft/{model_name}")
with st.spinner(text=f"Generating..."):
st.image(
model.generate_app(
num=timestamped_filename(),
nrow=nrows,
checkpoint=-1,
types=generation_type
)
)
if choose == "Interpolation":
st.title(choose)
st.markdown(INTERPOLATION_TEXT)
model_name = st.selectbox(
'Choose model:',
clean_models(model_names, COLLECTION2COLLECTION_KEYS)
)
nrows = st.number_input("Number of rows:",
min_value=1,
max_value=10,
step=1,
value=1,
)
num_steps = st.number_input("Number of steps:",
min_value=1,
max_value=1000,
step=1,
value=100,
)
generate_image_button = st.button("Generate")
if generate_image_button:
with st.spinner(text=f"Downloading selected model..."):
model = load_lightweight_model(f"huggingnft/{model_name}")
my_bar = st.progress(0)
result = model.generate_interpolation(
num=timestamped_filename(),
num_image_tiles=nrows,
num_steps=num_steps,
save_frames=False,
progress_bar=my_bar
)
my_bar.empty()
with st.spinner(text=f"Uploading result..."):
st.image(result)
if choose == "Collection2Collection":
st.title(choose)
st.markdown(INTERPOLATION_TEXT)
model_name = st.selectbox(
'Choose model:',
set(model_names) - set(clean_models(model_names, COLLECTION2COLLECTION_KEYS))
)
generate_image_button = st.button("Generate")
if generate_image_button:
st.markdown("generating Collection2Collection")
|