File size: 11,497 Bytes
91cb2a2
 
 
421b84e
91cb2a2
e1149ce
 
fc77bd1
421b84e
91cb2a2
065a30a
421b84e
065a30a
91cb2a2
 
 
 
421b84e
 
 
93e0d72
421b84e
93e0d72
421b84e
 
 
93e0d72
91cb2a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c44e865
91cb2a2
1bff76c
91cb2a2
 
 
 
 
 
 
 
5dd610e
91cb2a2
 
 
 
 
 
 
 
5dd610e
91cb2a2
 
 
 
 
 
 
 
5dd610e
91cb2a2
 
 
 
 
 
 
 
5dd610e
91cb2a2
 
 
 
 
 
 
 
5dd610e
91cb2a2
 
 
 
 
 
 
 
5dd610e
91cb2a2
 
 
 
 
 
 
 
5dd610e
91cb2a2
 
 
 
 
 
 
 
5dd610e
91cb2a2
 
 
 
 
 
 
 
5dd610e
91cb2a2
 
 
 
 
 
 
 
5dd610e
91cb2a2
 
8bf192d
91cb2a2
 
 
 
 
5dd610e
91cb2a2
 
8bf192d
91cb2a2
 
 
 
 
5dd610e
91cb2a2
 
 
 
 
8bf192d
91cb2a2
 
 
 
 
 
 
 
 
5dd610e
91cb2a2
 
 
421b84e
 
 
 
 
 
91cb2a2
 
421b84e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4a7f09
421b84e
 
a4a7f09
421b84e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbb451a
a4a7f09
421b84e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ab2c19
421b84e
 
b2cc946
 
413416c
98559f1
b2cc946
 
 
 
 
 
 
 
421b84e
 
 
91cb2a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421b84e
 
 
 
91cb2a2
99ad0a1
e6f3d40
1bff76c
91cb2a2
421b84e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
from huggingface_hub import HfApi, Repository

from PIL import Image, ImageDraw, ImageFont

from datetime import date
import time  

import os
import pandas as pd

from utils import *

api = HfApi()

DATASET_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/Deep-RL-Course-Certification"
CERTIFIED_USERS_FILENAME = "certified_users.csv"
CERTIFIED_USERS_DIR = "certified_users"

HF_TOKEN = os.environ.get("HF_TOKEN")

repo = Repository(
    local_dir=CERTIFIED_USERS_DIR, clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)

def get_user_models(hf_username, env_tag, lib_tag):
    """
    List the Reinforcement Learning models
    from user given environment and lib
    :param hf_username: User HF username
    :param env_tag: Environment tag
    :param lib_tag: Library tag
    """
    api = HfApi()
    models = api.list_models(author=hf_username, filter=["reinforcement-learning", env_tag, lib_tag])

    user_model_ids = [x.modelId for x in models]
    return user_model_ids


def get_metadata(model_id):
  """
  Get model metadata (contains evaluation data)
  :param model_id
  """
  try:
    readme_path = hf_hub_download(model_id, filename="README.md")
    return metadata_load(readme_path)
  except requests.exceptions.HTTPError:
    # 404 README.md not found
    return None


def parse_metrics_accuracy(meta):
  """
  Get model results and parse it
  :param meta: model metadata
  """
  if "model-index" not in meta:
    return None
  result = meta["model-index"][0]["results"]
  metrics = result[0]["metrics"]
  accuracy = metrics[0]["value"]
  
  return accuracy


def parse_rewards(accuracy):
  """
  Parse mean_reward and std_reward
  :param accuracy: model results
  """
  default_std = -1000
  default_reward= -1000
  if accuracy !=  None:
      accuracy = str(accuracy)
      parsed =  accuracy.split(' +/- ')
      if len(parsed)>1:
          mean_reward = float(parsed[0])
          std_reward =  float(parsed[1])
      elif len(parsed)==1: #only mean reward   
          mean_reward = float(parsed[0])
          std_reward =  float(0)
      else: 
          mean_reward = float(default_std)
          std_reward = float(default_reward)
  else:
      mean_reward = float(default_std)
      std_reward = float(default_reward)
  
  return mean_reward, std_reward

def calculate_best_result(user_model_ids):
  """
  Calculate the best results of a unit
  best_result = mean_reward - std_reward
  :param user_model_ids: RL models of a user
  """
  best_result = -100
  best_model_id = ""
  for model in user_model_ids:
    meta = get_metadata(model)
    if meta is None:
      continue
    accuracy = parse_metrics_accuracy(meta)
    mean_reward, std_reward = parse_rewards(accuracy)
    result = mean_reward - std_reward
    if result > best_result:
      best_result = result
      best_model_id = model
      
  return best_result, best_model_id

def check_if_passed(model):
  """
  Check if result >= baseline
  to know if you pass
  :param model: user model
  """
  if model["best_result"] >= model["min_result"]:
    model["passed_"] = True

def certification(hf_username, first_name, last_name):
  results_certification = [
      {
          "unit": "Unit 1",
          "env": "LunarLander-v2",
          "library": "stable-baselines3",
          "min_result": 200,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
      },
  {
          "unit": "Unit 2",
          "env": "Taxi-v3",
          "library": "q-learning",
          "min_result": 4,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
  },
  {
          "unit": "Unit 3",
          "env": "SpaceInvadersNoFrameskip-v4",
          "library": "stable-baselines3",
          "min_result": 200,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
  },
  {
          "unit": "Unit 4",
          "env": "CartPole-v1",
          "library": "reinforce",
          "min_result": 350,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
  },
    {
          "unit": "Unit 4",
          "env": "Pixelcopter-PLE-v0",
          "library": "reinforce",
          "min_result": 5,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
    },
      {
          "unit": "Unit 5",
          "env": "ML-Agents-SnowballTarget",
          "library": "ml-agents",
          "min_result": -100,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
    },
      {
          "unit": "Unit 5",
          "env": "ML-Agents-Pyramids",
          "library": "ml-agents",
          "min_result": -100,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
    },
      {
          "unit": "Unit 6",
          "env": "AntBulletEnv-v0",
          "library": "stable-baselines3",
          "min_result": 650,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
    },
      {
          "unit": "Unit 6",
          "env": "PandaReachDense-v2",
          "library": "stable-baselines3",
          "min_result": -3.5,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
    },
      {
          "unit": "Unit 7",
          "env": "ML-Agents-SoccerTwos",
          "library": "ml-agents",
          "min_result": -100,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
    },
      {
          "unit": "Unit 8 PI",
          "env": "GodotRL-JumperHard",
          "library": "cleanrl",
          "min_result": -100,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
    },
      {
          "unit": "Unit 8 PII",
          "env": "Vizdoom-Battle",
          "library": "cleanrl",
          "min_result": -100,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
    },
  ] 
  for unit in results_certification:
    # Get user model
    user_models = get_user_models(hf_username, unit['env'], unit['library'])

    # Calculate the best result and get the best_model_id
    best_result, best_model_id = calculate_best_result(user_models)

    # Save best_result and best_model_id
    unit["best_result"] = best_result
    unit["best_model_id"] = make_clickable_model(best_model_id)

    # Based on best_result do we pass the unit?
    check_if_passed(unit)
    unit["passed"] = pass_emoji(unit["passed_"])
    
  print(results_certification)
 
  df1 = pd.DataFrame(results_certification)

  df = df1[['passed', 'unit', 'env', 'min_result', 'best_result', 'best_model_id']]

  verify_certification(results_certification, hf_username, first_name, last_name)

  return df

"""
Verify that the user pass.
If yes:
- Generate the certification
- Send an email
- Print the certification

If no:
- Explain why the user didn't pass yet
"""
def verify_certification(df, hf_username, first_name, last_name):
  # Check that we pass
  model_pass_nb = 0
  pass_percentage = 0
  for unit in df:
    if unit["passed_"] is True:
      model_pass_nb += 1
  
  pass_percentage = (model_pass_nb/12) * 100 
  print("pass_percentage", pass_percentage)
  
  if pass_percentage == 100:
    # Generate a certificate of excellence
    generate_certificate("./certificate_models/certificate-excellence.png", first_name, last_name)

    # Add this user to our database
    add_certified_user(hf_username, first_name, last_name, pass_percentage)
    
    # Output everything in gradio


  elif pass_percentage < 100 and pass_percentage >= 80:
    # Certificate of completion
    generate_certificate("./certificate_models/certificate-completion.png", first_name, last_name)

    # Add this user to our database
    add_certified_user(hf_username, first_name, last_name, pass_percentage)

    # Output everything in gradio

  
  else:
    # Not pass yet
    print ("not pass yet")

def generate_certificate(certificate_model, first_name, last_name):
    im = Image.open(certificate_model)
    d = ImageDraw.Draw(im)

    name_font = ImageFont.truetype("Quattrocento-Regular.ttf", 100)
    date_font = ImageFont.truetype("Quattrocento-Regular.ttf", 48)
    
    name = str(first_name) + " " + str(last_name)
    print("NAME", name)
    
    # Debug line name
    #d.line(((200, 740), (1800, 740)), "gray")
    #d.line(((1000, 0), (1000, 1400)), "gray")
    
    # Name
    d.text((1000, 740), name, fill="black", anchor="mm", font=name_font)

    # Debug line date
    #d.line(((1500, 0), (1500, 1400)), "gray")

    # Date of certification
    d.text((1480, 1170), str(date.today()), fill="black", anchor="mm", font=date_font)
  
    im.save("certificate_"+".png")


def add_certified_user(hf_username, first_name, last_name, pass_percentage):
  print("ADD CERTIFIED USER")
  repo.git_pull()
  history = pd.read_csv(os.path.join(CERTIFIED_USERS_DIR, CERTIFIED_USERS_FILENAME))

  # Check if this hf_username is already in our dataset:
  check = history.loc[history['hf_username'] == hf_username]
  if not check.empty:
    new_row = pd.DataFrame({'hf_username': hf_username, 'first_name': first_name, 'last_name': last_name, 'pass_percentage': pass_percentage, 'datetime': time.time()})
    print("CHECK", check)
    print("INDEX", check.index[0])
    history.iloc[check.index[0]] = new_row
  else:
    new_row = pd.DataFrame({'hf_username': hf_username, 'first_name': first_name, 'last_name': last_name, 'pass_percentage': pass_percentage, 'datetime': time.time()}, index=[0])
    history = pd.concat([new_row, history[:]]).reset_index(drop=True)
    
  history.to_csv(os.path.join(CERTIFIED_USERS_DIR, CERTIFIED_USERS_FILENAME), index=False)
  repo.push_to_hub(commit_message="Update certified users list")


with gr.Blocks() as demo:
    gr.Markdown(f"""
    # πŸ† Check your progress in the Deep Reinforcement Learning Course πŸ†
    You can check your progress here.
    
    - To get a certificate of completion, you must **pass 80% of the assignments before the end of April 2023**.
    - To get an honors certificate, you must **pass 100% of the assignments before the end of April 2023**.

    To pass an assignment your model result (mean_reward - std_reward) must be >= min_result

    **When min_result = -100 it means that you just need to push a model to pass this hands-on. No need to reach a certain result.**
    
    Just type your Hugging Face Username πŸ€— (in my case ThomasSimonini)
    """)
    
    hf_username = gr.Textbox(placeholder="ThomasSimonini", label="Your Hugging Face Username (case sensitive)")
    first_name = gr.Textbox(placeholder="Jane", label="Your First Name")
    last_name = gr.Textbox(placeholder="Doe", label="Your Last Name")
    #email = gr.Textbox(placeholder="[email protected]", label="Your Email (to receive your certificate)")
    check_progress_button = gr.Button(value="Check my progress")
    output1 = gr.components.Dataframe(value= certification(hf_username, first_name, last_name), headers=["Pass?", "Unit", "Environment", "Baseline", "Your best result", "Your best model id"], datatype=["markdown", "markdown", "markdown", "number", "number", "markdown", "bool"])
    #output2 = gr.components.Image(type="pil")
    check_progress_button.click(fn=certification, inputs=[hf_username, first_name, last_name], outputs= output1)#[output1, output2])

demo.launch(debug=True)