File size: 12,614 Bytes
91cb2a2 1c0393e 91cb2a2 e1149ce fc77bd1 421b84e 91cb2a2 065a30a 421b84e 065a30a 91cb2a2 421b84e 93e0d72 421b84e 93e0d72 421b84e 93e0d72 91cb2a2 c44e865 91cb2a2 1c0393e 1bff76c 91cb2a2 5dd610e 91cb2a2 5dd610e 91cb2a2 5dd610e 91cb2a2 5dd610e 91cb2a2 5dd610e 91cb2a2 5dd610e 91cb2a2 5dd610e 91cb2a2 5dd610e 91cb2a2 5dd610e 91cb2a2 5dd610e 91cb2a2 8bf192d 91cb2a2 e9b5b0a 91cb2a2 5dd610e 91cb2a2 8bf192d 91cb2a2 e9b5b0a 91cb2a2 5dd610e 91cb2a2 8bf192d 91cb2a2 5dd610e 91cb2a2 421b84e 898ea9f 0e270cd 7539ced 91cb2a2 421b84e b783df7 421b84e a4a7f09 421b84e e9b5b0a 156c338 1c0393e 156c338 421b84e b783df7 421b84e e9b5b0a 156c338 1c0393e 156c338 421b84e 622fe78 b783df7 c86d5c1 e9b5b0a 156c338 1c0393e 156c338 22d8e29 b783df7 e9b5b0a 421b84e bbb451a a4a7f09 421b84e 452a3a4 e183e91 421b84e b783df7 e9b5b0a e183e91 421b84e 1c0393e 4ab2c19 421b84e b2cc946 413416c 98559f1 2cb378a 3096d19 b2cc946 421b84e 91cb2a2 e9b5b0a 91cb2a2 e9b5b0a 91cb2a2 e9b5b0a 91cb2a2 421b84e 0e270cd cc21236 b783df7 3fc76ef 7539ced 91cb2a2 421b84e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download, Repository
from huggingface_hub.repocard import metadata_load
from PIL import Image, ImageDraw, ImageFont
from datetime import date
import time
import os
import pandas as pd
from utils import *
api = HfApi()
DATASET_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/Deep-RL-Course-Certification"
CERTIFIED_USERS_FILENAME = "certified_users.csv"
CERTIFIED_USERS_DIR = "certified_users"
HF_TOKEN = os.environ.get("HF_TOKEN")
repo = Repository(
local_dir=CERTIFIED_USERS_DIR, clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
def get_user_models(hf_username, env_tag, lib_tag):
"""
List the Reinforcement Learning models
from user given environment and lib
:param hf_username: User HF username
:param env_tag: Environment tag
:param lib_tag: Library tag
"""
api = HfApi()
models = api.list_models(author=hf_username, filter=["reinforcement-learning", env_tag, lib_tag])
user_model_ids = [x.modelId for x in models]
return user_model_ids
def get_metadata(model_id):
"""
Get model metadata (contains evaluation data)
:param model_id
"""
try:
readme_path = hf_hub_download(model_id, filename="README.md")
return metadata_load(readme_path)
except requests.exceptions.HTTPError:
# 404 README.md not found
return None
def parse_metrics_accuracy(meta):
"""
Get model results and parse it
:param meta: model metadata
"""
if "model-index" not in meta:
return None
result = meta["model-index"][0]["results"]
metrics = result[0]["metrics"]
accuracy = metrics[0]["value"]
return accuracy
def parse_rewards(accuracy):
"""
Parse mean_reward and std_reward
:param accuracy: model results
"""
default_std = -1000
default_reward= -1000
if accuracy != None:
accuracy = str(accuracy)
parsed = accuracy.split(' +/- ')
if len(parsed)>1:
mean_reward = float(parsed[0])
std_reward = float(parsed[1])
elif len(parsed)==1: #only mean reward
mean_reward = float(parsed[0])
std_reward = float(0)
else:
mean_reward = float(default_std)
std_reward = float(default_reward)
else:
mean_reward = float(default_std)
std_reward = float(default_reward)
return mean_reward, std_reward
def calculate_best_result(user_model_ids):
"""
Calculate the best results of a unit
best_result = mean_reward - std_reward
:param user_model_ids: RL models of a user
"""
best_result = -100
best_model_id = ""
for model in user_model_ids:
meta = get_metadata(model)
if meta is None:
continue
accuracy = parse_metrics_accuracy(meta)
mean_reward, std_reward = parse_rewards(accuracy)
result = mean_reward - std_reward
if result > best_result:
best_result = result
best_model_id = model
return best_result, best_model_id
def check_if_passed(model):
"""
Check if result >= baseline
to know if you pass
:param model: user model
"""
if model["best_result"] >= model["min_result"]:
model["passed_"] = True
def certification(hf_username, first_name, last_name):
results_certification = [
{
"unit": "Unit 1",
"env": "LunarLander-v2",
"library": "stable-baselines3",
"min_result": 200,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 2",
"env": "Taxi-v3",
"library": "q-learning",
"min_result": 4,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 3",
"env": "SpaceInvadersNoFrameskip-v4",
"library": "stable-baselines3",
"min_result": 200,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 4",
"env": "CartPole-v1",
"library": "reinforce",
"min_result": 350,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 4",
"env": "Pixelcopter-PLE-v0",
"library": "reinforce",
"min_result": 5,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 5",
"env": "ML-Agents-SnowballTarget",
"library": "ml-agents",
"min_result": -100,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 5",
"env": "ML-Agents-Pyramids",
"library": "ml-agents",
"min_result": -100,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 6",
"env": "AntBulletEnv-v0",
"library": "stable-baselines3",
"min_result": 650,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 6",
"env": "PandaReachDense-v2",
"library": "stable-baselines3",
"min_result": -3.5,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 7",
"env": "ML-Agents-SoccerTwos",
"library": "ml-agents",
"min_result": -100,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 8 PI",
"env": "GodotRL-JumperHard",
"library": "cleanrl",
"min_result": 100,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 8 PII",
"env": "Vizdoom-Battle",
"library": "cleanrl",
"min_result": 100,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
]
for unit in results_certification:
# Get user model
user_models = get_user_models(hf_username, unit['env'], unit['library'])
# Calculate the best result and get the best_model_id
best_result, best_model_id = calculate_best_result(user_models)
# Save best_result and best_model_id
unit["best_result"] = best_result
unit["best_model_id"] = make_clickable_model(best_model_id)
# Based on best_result do we pass the unit?
check_if_passed(unit)
unit["passed"] = pass_emoji(unit["passed_"])
print(results_certification)
df1 = pd.DataFrame(results_certification)
df = df1[['passed', 'unit', 'env', 'min_result', 'best_result', 'best_model_id']]
certificate, message, pdf = verify_certification(results_certification, hf_username, first_name, last_name)
print("MESSAGE", message)
return message, pdf, certificate, df
"""
Verify that the user pass.
If yes:
- Generate the certification
- Send an email
- Print the certification
If no:
- Explain why the user didn't pass yet
"""
def verify_certification(df, hf_username, first_name, last_name):
# Check that we pass
model_pass_nb = 0
pass_percentage = 0
for unit in df:
if unit["passed_"] is True:
model_pass_nb += 1
pass_percentage = (model_pass_nb/12) * 100
print("pass_percentage", pass_percentage)
if pass_percentage == 100:
# Generate a certificate of excellence
certificate, pdf = generate_certificate("./certificate_models/certificate-excellence.png", first_name, last_name)
# Add this user to our database
add_certified_user(hf_username, first_name, last_name, pass_percentage)
# Add a message
message = """
Congratulations, you successfully completed the Hugging Face Deep Reinforcement Learning Course π \n
**Since you pass 100% of the hands-on you get a Certificate of Excellence π.**
"""
elif pass_percentage < 100 and pass_percentage >= 80:
# Certificate of completion
certificate, pdf = generate_certificate("./certificate_models/certificate-completion.png", first_name, last_name)
# Add this user to our database
add_certified_user(hf_username, first_name, last_name, pass_percentage)
# Add a message
message = """
Congratulations, you successfully completed the Hugging Face Deep Reinforcement Learning Course π \n
**Since you pass 80% of the hands-on you get a Certificate of Completion π**. You can try to get a Certificate of Excellence
if you pass 100% of the hands-on, don't hesitate to check which unit you didn't pass and update these models.
"""
else:
# Not pass yet
certificate = Image.new("RGB", (100, 100), (255, 255, 255))
pdf = ""
# Add a message
message = """
You **didn't pass the minimum of 80%** of the hands-on to get a certificate of completion. **But don't be discouraged**.
Check below which units you need to do again to get your certificate πͺ
"""
print("return certificate")
return certificate, message, pdf
def generate_certificate(certificate_model, first_name, last_name):
im = Image.open(certificate_model)
d = ImageDraw.Draw(im)
name_font = ImageFont.truetype("Quattrocento-Regular.ttf", 100)
date_font = ImageFont.truetype("Quattrocento-Regular.ttf", 48)
name = str(first_name) + " " + str(last_name)
print("NAME", name)
# Debug line name
#d.line(((200, 740), (1800, 740)), "gray")
#d.line(((1000, 0), (1000, 1400)), "gray")
# Name
d.text((1000, 740), name, fill="black", anchor="mm", font=name_font)
# Debug line date
#d.line(((1500, 0), (1500, 1400)), "gray")
# Date of certification
d.text((1480, 1170), str(date.today()), fill="black", anchor="mm", font=date_font)
im_temp = im.load()
background = Image.new("RGB", im_temp.size, (255, 255, 255))
background.paste(im_temp, mask=png.split()[3]) # 3 is the alpha channel
pdf = background.save("certificate"+".pdf")
return im, pdf
def add_certified_user(hf_username, first_name, last_name, pass_percentage):
"""
Add the certified user to the database
"""
print("ADD CERTIFIED USER")
repo.git_pull()
history = pd.read_csv(os.path.join(CERTIFIED_USERS_DIR, CERTIFIED_USERS_FILENAME))
# Check if this hf_username is already in our dataset:
check = history.loc[history['hf_username'] == hf_username]
if not check.empty:
history = history.drop(labels=check.index[0], axis=0)
new_row = pd.DataFrame({'hf_username': hf_username, 'first_name': first_name, 'last_name': last_name, 'pass_percentage': pass_percentage, 'datetime': time.time()}, index=[0])
history = pd.concat([new_row, history[:]]).reset_index(drop=True)
history.to_csv(os.path.join(CERTIFIED_USERS_DIR, CERTIFIED_USERS_FILENAME), index=False)
repo.push_to_hub(commit_message="Update certified users list")
with gr.Blocks() as demo:
gr.Markdown(f"""
# Get your certificate π
The certification process is completely free:
- To get a *certificate of completion*: you need to **pass 80% of the assignments before the end of April 2023**.
- To get a *certificate of honors*: you need to **pass 100% of the assignments before the end of April 2023**.
For more information about the certification process [check this](https://huggingface.co/deep-rl-course/communication/certification)
Donβt hesitate to share your certificate on Twitter (tag me @ThomasSimonini and @huggingface) and on Linkedin.
""")
hf_username = gr.Textbox(placeholder="ThomasSimonini", label="Your Hugging Face Username (case sensitive)")
first_name = gr.Textbox(placeholder="Jane", label="Your First Name")
last_name = gr.Textbox(placeholder="Doe", label="Your Last Name")
#email = gr.Textbox(placeholder="[email protected]", label="Your Email (to receive your certificate)")
check_progress_button = gr.Button(value="Check if I pass")
output_text = gr.components.Textbox()
output_pdf = gr.File()
output_img = gr.components.Image(type="pil")
output_dataframe = gr.components.Dataframe(headers=["Pass?", "Unit", "Environment", "Baseline", "Your best result", "Your best model id"], datatype=["markdown", "markdown", "markdown", "number", "number", "markdown", "bool"]) #value= certification(hf_username, first_name, last_name),
check_progress_button.click(fn=certification, inputs=[hf_username, first_name, last_name], outputs=[output_text, output_pdf, output_img, output_dataframe])#[output1, output2])
demo.launch(debug=True) |