Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
from collections.abc import Iterator | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer | |
model_id = "google/gemma-3-12b-it" | |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left") | |
model = Gemma3ForConditionalGeneration.from_pretrained( | |
model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager" | |
) | |
def process_new_user_message(message: dict) -> list[dict]: | |
return [{"type": "text", "text": message["text"]}, *[{"type": "image", "url": path} for path in message["files"]]] | |
def process_history(history: list[dict]) -> list[dict]: | |
messages = [] | |
current_user_content: list[dict] = [] | |
for item in history: | |
if item["role"] == "assistant": | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
current_user_content = [] | |
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
else: | |
content = item["content"] | |
if isinstance(content, str): | |
current_user_content.append({"type": "text", "text": content}) | |
else: | |
current_user_content.append({"type": "image", "url": content[0]}) | |
return messages | |
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]: | |
messages = [] | |
if system_prompt: | |
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) | |
messages.extend(process_history(history)) | |
messages.append({"role": "user", "content": process_new_user_message(message)}) | |
inputs = processor.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt", | |
).to(device=model.device, dtype=torch.bfloat16) | |
streamer = TextIteratorStreamer(processor, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
output = "" | |
for delta in streamer: | |
output += delta | |
yield output | |
examples = [ | |
[ | |
{ | |
"text": "caption this image", | |
"files": ["assets/sample-images/01.png"], | |
} | |
], | |
[ | |
{ | |
"text": "What's the sign says?", | |
"files": ["assets/sample-images/02.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Compare and contrast the two images.", | |
"files": ["assets/sample-images/03.png"], | |
} | |
], | |
[ | |
{ | |
"text": "List all the objects in the image and their colors.", | |
"files": ["assets/sample-images/04.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Describe the atmosphere of the scene.", | |
"files": ["assets/sample-images/05.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Write a poem inspired by the visual elements of the images.", | |
"files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Compose a short musical piece inspired by the visual elements of the images.", | |
"files": [ | |
"assets/sample-images/07-1.png", | |
"assets/sample-images/07-2.png", | |
"assets/sample-images/07-3.png", | |
"assets/sample-images/07-4.png", | |
], | |
} | |
], | |
[ | |
{ | |
"text": "Write a short story about what might have happened in this house.", | |
"files": ["assets/sample-images/08.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Create a short story based on the sequence of images.", | |
"files": [ | |
"assets/sample-images/09-1.png", | |
"assets/sample-images/09-2.png", | |
"assets/sample-images/09-3.png", | |
"assets/sample-images/09-4.png", | |
"assets/sample-images/09-5.png", | |
], | |
} | |
], | |
[ | |
{ | |
"text": "Describe the creatures that would live in this world.", | |
"files": ["assets/sample-images/10.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Read text in the image.", | |
"files": ["assets/additional-examples/1.png"], | |
} | |
], | |
[ | |
{ | |
"text": "When is this ticket dated and how much did it cost?", | |
"files": ["assets/additional-examples/2.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Read the text in the image into markdown.", | |
"files": ["assets/additional-examples/3.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Evaluate this integral.", | |
"files": ["assets/additional-examples/4.png"], | |
} | |
], | |
] | |
demo = gr.ChatInterface( | |
fn=run, | |
type="messages", | |
textbox=gr.MultimodalTextbox(file_types=["image"], file_count="multiple"), | |
multimodal=True, | |
additional_inputs=[ | |
gr.Textbox(label="System Prompt", value="You are a helpful assistant."), | |
gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=500), | |
], | |
stop_btn=False, | |
title="Gemma 3 12B it", | |
description="<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' />", | |
examples=examples, | |
run_examples_on_click=False, | |
cache_examples=False, | |
css_paths="style.css", | |
delete_cache=(1800, 1800), | |
) | |
if __name__ == "__main__": | |
demo.launch() | |