Spaces:
Running
Running
File size: 11,910 Bytes
be293db 9ec7c08 8b77729 1cc3978 be293db 827b7ef 08a65ff 8860d0f 6356cbd 9ec7c08 160959f be293db 827b7ef be293db 9ec7c08 8b77729 9ec7c08 8b77729 26742b2 8b77729 be293db 08a65ff 26742b2 827b7ef 9242f47 26742b2 bdf93e0 1cc3978 bdf93e0 9242f47 827b7ef 1cc3978 827b7ef 1cc3978 9242f47 9ec7c08 08a65ff 05edfc3 c4882f0 05edfc3 26742b2 8b77729 9ec7c08 08a65ff be293db 08a65ff be293db cca065e be293db 08a65ff be293db 326ad7e 8b77729 326ad7e 9ec7c08 8b77729 9ec7c08 326ad7e 9ec7c08 08a65ff 326ad7e 9ec7c08 326ad7e 9ec7c08 e25cf02 326ad7e 9ec7c08 326ad7e c4882f0 bdf93e0 827b7ef bdf93e0 827b7ef be293db 326ad7e 26742b2 326ad7e 827b7ef bdf93e0 827b7ef 326ad7e 26742b2 326ad7e 26742b2 8b77729 be293db e25cf02 be293db 387d8f1 be293db 9ec7c08 08a65ff 326ad7e 26742b2 08a65ff 26742b2 9242f47 08a65ff 8860d0f 326ad7e 26742b2 8860d0f 326ad7e 9242f47 be293db 326ad7e 8860d0f 08a65ff be293db 8860d0f 326ad7e 08a65ff 8b77729 9ec7c08 08a65ff 326ad7e 26742b2 08a65ff 26742b2 c4882f0 08a65ff 8b77729 326ad7e 8860d0f 08a65ff be293db 8860d0f 326ad7e 8b77729 827b7ef c2de6fa 827b7ef f208d84 827b7ef 08a65ff c2de6fa 8b77729 9ec7c08 08a65ff 326ad7e 26742b2 08a65ff 26742b2 c4882f0 08a65ff 326ad7e 26742b2 08a65ff 26742b2 c4882f0 08a65ff 8b77729 26742b2 9ec7c08 c2de6fa 9ec7c08 c2de6fa 26742b2 c2de6fa c4882f0 c2de6fa c4882f0 08a65ff 26742b2 9ec7c08 08a65ff 26742b2 08a65ff 26742b2 08a65ff acb47d3 26742b2 08a65ff 26742b2 08a65ff 26742b2 acb47d3 26742b2 08a65ff 26742b2 9ec7c08 be293db acb47d3 326ad7e 8b77729 9ec7c08 9242f47 8b77729 9242f47 cca065e 08a65ff 1cc3978 08a65ff 8b77729 827b7ef 05edfc3 bdf93e0 05edfc3 827b7ef 8b77729 08a65ff 326ad7e 1cc3978 326ad7e 08a65ff 1cc3978 bdf93e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import json
import logging
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import langcodes as lc
import streamlit as st
import yaml
from datasets.utils.metadata import (
DatasetMetadata,
known_creators,
known_licenses,
known_multilingualities,
known_size_categories,
known_task_ids,
)
from apputils import new_state
st.set_page_config(
page_title="HF Dataset Tagging App",
page_icon="https://huggingface.co/front/assets/huggingface_logo.svg",
layout="wide",
initial_sidebar_state="auto",
)
# XXX: restyling errors as streamlit does not respect whitespaces on `st.error` and doesn't scroll horizontally, which
# generally makes things easier when reading error reports
st.markdown(
"""
<style>
div[role=alert] { overflow-x: scroll}
div.stAlert p { white-space: pre }
</style>
""",
unsafe_allow_html=True,
)
########################
## Helper functions
########################
def load_ds_datas() -> Dict[str, Dict[str, Dict]]:
metada_exports = sorted(
[f for f in Path.cwd().iterdir() if f.name.startswith("metadata_")],
key=lambda f: f.lstat().st_mtime,
reverse=True,
)
if len(metada_exports) == 0:
raise ValueError("need to run ./build_metada_file.py at least once")
with metada_exports[0].open() as fi:
logging.info(f"loaded {metada_exports[0]}")
return json.load(fi)
def split_known(vals: List[str], okset: List[str]) -> Tuple[List[str], List[str]]:
if vals is None:
return [], []
return [v for v in vals if v in okset], [v for v in vals if v not in okset]
def multiselect(
w: st.delta_generator.DeltaGenerator,
title: str,
markdown: str,
values: List[str],
valid_set: List[str],
format_func: Callable = str,
):
valid_values, invalid_values = split_known(values, valid_set)
w.markdown(f"#### {title}")
if len(invalid_values) > 0:
w.markdown("Found the following invalid values:")
w.error(invalid_values)
return w.multiselect(markdown, valid_set, default=valid_values, format_func=format_func, key=title)
def validate_yaml(w: st.delta_generator.DeltaGenerator, yamlblock: str):
try:
DatasetMetadata.from_yaml_string(yamlblock)
if "pretty_name: " not in yamlblock or "pretty_name: ''" in yamlblock:
raise ValueError("Please specify a non-empty Dataset name.")
w.markdown("β
This is a valid tagset! π€")
except Exception as e:
w.markdown("β This is an invalid tagset, here are the errors in it:")
w.error(e)
def map_num_examples_to_size_category(n: int) -> str:
if n < 0:
size_cat = "unknown"
elif n < 1000:
size_cat = "n<1K"
elif n < 10000:
size_cat = "1K<n<10K"
elif n < 100000:
size_cat = "10K<n<100K"
elif n < 1000000:
size_cat = "100K<n<1M"
elif n < 10000000:
size_cat = "1M<n<10M"
elif n < 100000000:
size_cat = "10M<n<100M"
elif n < 1000000000:
size_cat = "100M<n<1B"
elif n < 10000000000:
size_cat = "1B<n<10B"
elif n < 100000000000:
size_cat = "10B<n<100B"
elif n < 1000000000000:
size_cat = "100B<n<1T"
else:
size_cat = "n>1T"
return size_cat
def is_state_empty(state: Dict[str, List]) -> bool:
return sum(len(v) if v is not None else 0 for v in state.values()) == 0
state = new_state()
datasets_md = load_ds_datas()
dataset_ids = list(datasets_md.keys())
dataset_id_to_metadata = {name: mds["metadata"] for name, mds in datasets_md.items()}
dataset_id_to_infos = {name: mds["infos"] for name, mds in datasets_md.items()}
########################
## Dataset selection
########################
st.sidebar.markdown(
"""
# HuggingFace Dataset Tagger
This app aims to make it easier to add structured tags to the datasets present in the library.
"""
)
queryparams = st.experimental_get_query_params()
preload = queryparams.get("preload_dataset", list())
preloaded_id = None
initial_state = None
initial_infos, initial_info_cfg = None, None
dataset_selector_index = 0
if len(preload) == 1 and preload[0] in dataset_ids:
preloaded_id, *_ = preload
initial_state = dataset_id_to_metadata.get(preloaded_id)
initial_infos = dataset_id_to_infos.get(preloaded_id)
initial_info_cfg = next(iter(initial_infos)) if initial_infos is not None else None # pick first available config
state = initial_state or new_state()
dataset_selector_index = dataset_ids.index(preloaded_id)
preloaded_id = st.sidebar.selectbox(
label="Choose dataset to load tag set from", options=dataset_ids, index=dataset_selector_index
)
leftbtn, rightbtn = st.sidebar.columns(2)
if leftbtn.button("pre-load"):
initial_state = dataset_id_to_metadata[preloaded_id]
initial_infos = dataset_id_to_infos[preloaded_id]
initial_info_cfg = next(iter(initial_infos)) # pick first available config
state = initial_state or new_state()
st.experimental_set_query_params(preload_dataset=preloaded_id)
if not is_state_empty(state):
if rightbtn.button("reset"):
state = new_state()
initial_state = None
preloaded_id = None
initial_infos = None
st.experimental_set_query_params()
if preloaded_id is not None and initial_state is not None:
st.sidebar.markdown(
f"""
---
The current base tagset is [`{preloaded_id}`](https://huggingface.co/datasets/{preloaded_id})
"""
)
validate_yaml(st.sidebar, yaml.dump(initial_state))
st.sidebar.markdown(
f"""
Here is the matching yaml block:
```yaml
{yaml.dump(initial_state)}
```
"""
)
leftcol, _, rightcol = st.columns([12, 1, 12])
#
# DATASET NAME
#
leftcol.markdown("### Dataset name")
state["pretty_name"] = leftcol.text_area(
"Pick a nice descriptive name for the dataset",
)
#
# TASKS
#
leftcol.markdown("### Supported tasks")
state["task_categories"] = multiselect(
leftcol,
"Task category",
"What categories of task does the dataset support?",
values=state["task_categories"],
valid_set=sorted(list(known_task_ids.keys())),
)
task_specifics = []
for task_category in state["task_categories"]:
specs = multiselect(
leftcol,
f"Specific _{task_category}_ tasks",
f"What specific tasks does the dataset support?",
values=[ts for ts in (state["task_ids"] or []) if ts in known_task_ids[task_category].get("subtasks", [])],
valid_set=known_task_ids[task_category].get("subtasks", []),
)
if "other" in specs:
other_task = leftcol.text_input(
"You selected 'other' task. Please enter a short hyphen-separated description for the task:",
value="my-task-description",
)
leftcol.write(f"Registering {task_category}-other-{other_task} task")
specs[specs.index("other")] = f"{task_category}-other-{other_task}"
task_specifics += specs
state["task_ids"] = task_specifics
#
# LANGUAGES
#
leftcol.markdown("### Languages")
state["multilinguality"] = multiselect(
leftcol,
"Monolingual?",
"Does the dataset contain more than one language?",
values=state["multilinguality"],
valid_set=list(known_multilingualities.keys()),
format_func=lambda m: f"{m} : {known_multilingualities[m]}",
)
if "other" in state["multilinguality"]:
other_multilinguality = leftcol.text_input(
"You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:",
value="my-multilinguality",
)
leftcol.write(f"Registering other-{other_multilinguality} multilinguality")
state["multilinguality"][state["multilinguality"].index("other")] = f"other-{other_multilinguality}"
valid_values, invalid_values = list(), list()
for langtag in state["language"]:
try:
lc.get(langtag)
valid_values.append(langtag)
except:
invalid_values.append(langtag)
leftcol.markdown("#### Languages")
if len(invalid_values) > 0:
leftcol.markdown("Found the following invalid values:")
leftcol.error(invalid_values)
langtags = leftcol.text_area(
"What languages are represented in the dataset? expected format is BCP47 tags separated for ';' e.g. 'en;fr'",
value=";".join(valid_values),
)
state["language"] = langtags.strip().split(";") if langtags.strip() != "" else []
#
# DATASET CREATORS & ORIGINS
#
leftcol.markdown("### Dataset creators")
state["language_creators"] = multiselect(
leftcol,
"Data origin",
"Where does the text in the dataset come from?",
values=state["language_creators"],
valid_set=known_creators["language"],
)
state["annotations_creators"] = multiselect(
leftcol,
"Annotations origin",
"Where do the annotations in the dataset come from?",
values=state["annotations_creators"],
valid_set=known_creators["annotations"],
)
#
# LICENSE
#
state["license"] = multiselect(
leftcol,
"License",
"What license(s) is the dataset under?",
valid_set=list(known_licenses.keys()),
values=state["license"],
format_func=lambda l: f"{l} : {known_licenses[l]}",
)
#
# LINK TO SUPPORTED DATASETS
#
pre_select_ext_a = []
if "original" in state["source_datasets"]:
pre_select_ext_a += ["original"]
if any([p.startswith("extended") for p in state["source_datasets"]]):
pre_select_ext_a += ["extended"]
state["source_datasets"] = multiselect(
leftcol,
"Relations to existing work",
"Does the dataset contain original data and/or was it extended from other datasets?",
values=pre_select_ext_a,
valid_set=["original", "extended"],
)
if "extended" in state["source_datasets"]:
pre_select_ext_b = [p.split("|")[1] for p in state["source_datasets"] if p.startswith("extended|")]
extended_sources = multiselect(
leftcol,
"Linked datasets",
"Which other datasets does this one use data from?",
values=pre_select_ext_b,
valid_set=dataset_ids + ["other"],
)
# flush placeholder
state["source_datasets"].remove("extended")
state["source_datasets"] += [f"extended|{src}" for src in extended_sources]
#
# SIZE CATEGORY
#
leftcol.markdown("### Size category")
logging.info(initial_infos[initial_info_cfg]["splits"] if initial_infos is not None else 0)
initial_num_examples = (
sum([dct.get("num_examples", 0) for _split, dct in initial_infos[initial_info_cfg].get("splits", dict()).items()])
if initial_infos is not None
else -1
)
if initial_num_examples >= 0:
initial_size_categories = [map_num_examples_to_size_category(initial_num_examples)]
else:
initial_size_categories = []
current_size_cats = multiselect(
leftcol,
f"Size category",
f"How many samples are there in the dataset?",
values=initial_size_categories,
valid_set=known_size_categories,
)
if initial_size_categories:
leftcol.markdown(f"Computed size category from automatically generated dataset info to: `{initial_size_categories}`")
prev_size_cats = state.get("size_categories") or []
ok, nonok = split_known(prev_size_cats, known_size_categories)
if len(nonok) > 0:
leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}")
state["size_categories"] = current_size_cats
########################
## Show results
########################
rightcol.markdown(
f"""
### Finalized tag set
"""
)
if is_state_empty(state):
rightcol.markdown("β This is an invalid tagset: it's empty!")
else:
validate_yaml(rightcol, yaml.dump(state))
rightcol.markdown(
f"""
```yaml
{yaml.dump(state)}
```
---
#### Arbitrary yaml validator
This is a standalone tool, it is useful to check for errors on an existing tagset or modifying directly the text rather than the UI on the left.
""",
)
yamlblock = rightcol.text_area("Input your yaml here")
if yamlblock.strip() != "":
validate_yaml(rightcol, yamlblock)
|