datasets-tagging / tagging_app.py
Quentin Lhoest
update task taxonomy
9242f47
raw
history blame
12.2 kB
import json
import logging
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import langcodes as lc
import streamlit as st
import yaml
from datasets.utils.metadata import (
DatasetMetadata,
known_creators,
known_licenses,
known_multilingualities,
known_size_categories,
known_task_ids,
)
from apputils import new_state
st.set_page_config(
page_title="HF Dataset Tagging App",
page_icon="https://huggingface.co/front/assets/huggingface_logo.svg",
layout="wide",
initial_sidebar_state="auto",
)
# XXX: restyling errors as streamlit does not respect whitespaces on `st.error` and doesn't scroll horizontally, which
# generally makes things easier when reading error reports
st.markdown(
"""
<style>
div[role=alert] { overflow-x: scroll}
div.stAlert p { white-space: pre }
</style>
""",
unsafe_allow_html=True,
)
########################
## Helper functions
########################
def load_ds_datas() -> Dict[str, Dict[str, Dict]]:
metada_exports = sorted(
[f for f in Path.cwd().iterdir() if f.name.startswith("metadata_")],
key=lambda f: f.lstat().st_mtime,
reverse=True,
)
if len(metada_exports) == 0:
raise ValueError("need to run ./build_metada_file.py at least once")
with metada_exports[0].open() as fi:
logging.info(f"loaded {metada_exports[0]}")
return json.load(fi)
def split_known(vals: List[str], okset: List[str]) -> Tuple[List[str], List[str]]:
if vals is None:
return [], []
return [v for v in vals if v in okset], [v for v in vals if v not in okset]
def multiselect(
w: st.delta_generator.DeltaGenerator,
title: str,
markdown: str,
values: List[str],
valid_set: List[str],
format_func: Callable = str,
):
valid_values, invalid_values = split_known(values, valid_set)
w.markdown(f"#### {title}")
if len(invalid_values) > 0:
w.markdown("Found the following invalid values:")
w.error(invalid_values)
return w.multiselect(markdown, valid_set, default=valid_values, format_func=format_func, key=title)
def validate_dict(w: st.delta_generator.DeltaGenerator, state_dict: Dict):
try:
DatasetMetadata(**state_dict)
if not state_dict.get("pretty_name"):
raise ValueError("Please specify a non-empty Dataset name.")
w.markdown("βœ… This is a valid tagset! πŸ€—")
except Exception as e:
w.markdown("❌ This is an invalid tagset, here are the errors in it:")
w.error(e)
def map_num_examples_to_size_category(n: int) -> str:
if n < 0:
size_cat = "unknown"
elif n < 1000:
size_cat = "n<1K"
elif n < 10000:
size_cat = "1K<n<10K"
elif n < 100000:
size_cat = "10K<n<100K"
elif n < 1000000:
size_cat = "100K<n<1M"
elif n < 10000000:
size_cat = "1M<n<10M"
elif n < 100000000:
size_cat = "10M<n<100M"
elif n < 1000000000:
size_cat = "100M<n<1B"
elif n < 10000000000:
size_cat = "1B<n<10B"
elif n < 100000000000:
size_cat = "10B<n<100B"
elif n < 1000000000000:
size_cat = "100B<n<1T"
else:
size_cat = "n>1T"
return size_cat
def is_state_empty(state: Dict[str, List]) -> bool:
return sum(len(v) if v is not None else 0 for v in state.values()) == 0
state = new_state()
datasets_md = load_ds_datas()
dataset_ids = list(datasets_md.keys())
dataset_id_to_metadata = {name: mds["metadata"] for name, mds in datasets_md.items()}
dataset_id_to_infos = {name: mds["infos"] for name, mds in datasets_md.items()}
########################
## Dataset selection
########################
st.sidebar.markdown(
"""
# HuggingFace Dataset Tagger
This app aims to make it easier to add structured tags to the datasets present in the library.
"""
)
queryparams = st.experimental_get_query_params()
preload = queryparams.get("preload_dataset", list())
preloaded_id = None
initial_state = None
initial_infos, initial_info_cfg = None, None
dataset_selector_index = 0
if len(preload) == 1 and preload[0] in dataset_ids:
preloaded_id, *_ = preload
initial_state = dataset_id_to_metadata.get(preloaded_id)
initial_infos = dataset_id_to_infos.get(preloaded_id)
initial_info_cfg = next(iter(initial_infos)) if initial_infos is not None else None # pick first available config
state = initial_state or new_state()
dataset_selector_index = dataset_ids.index(preloaded_id)
preloaded_id = st.sidebar.selectbox(
label="Choose dataset to load tag set from", options=dataset_ids, index=dataset_selector_index
)
leftbtn, rightbtn = st.sidebar.columns(2)
if leftbtn.button("pre-load"):
initial_state = dataset_id_to_metadata[preloaded_id]
initial_infos = dataset_id_to_infos[preloaded_id]
initial_info_cfg = next(iter(initial_infos)) # pick first available config
state = initial_state or new_state()
st.experimental_set_query_params(preload_dataset=preloaded_id)
if not is_state_empty(state):
if rightbtn.button("flush state"):
state = new_state()
initial_state = None
preloaded_id = None
st.experimental_set_query_params()
if preloaded_id is not None and initial_state is not None:
st.sidebar.markdown(
f"""
---
The current base tagset is [`{preloaded_id}`](https://huggingface.co/datasets/{preloaded_id})
"""
)
validate_dict(st.sidebar, initial_state)
st.sidebar.markdown(
f"""
Here is the matching yaml block:
```yaml
{yaml.dump(initial_state)}
```
"""
)
leftcol, _, rightcol = st.columns([12, 1, 12])
#
# DATASET NAME
#
leftcol.markdown("### Dataset name")
state["pretty_name"] = leftcol.text_area(
"Pick a nice descriptive name for the dataset",
)
#
# TASKS
#
leftcol.markdown("### Supported tasks")
state["task_categories"] = multiselect(
leftcol,
"Task category",
"What categories of task does the dataset support?",
values=state["task_categories"],
valid_set=sorted(list(known_task_ids.keys())),
)
task_specifics = []
for task_category in state["task_categories"]:
specs = multiselect(
leftcol,
f"Specific _{task_category}_ tasks",
f"What specific tasks does the dataset support?",
values=[ts for ts in (state["task_ids"] or []) if ts in known_task_ids[task_category].get("subtasks", [])],
valid_set=known_task_ids[task_category].get("subtasks", []),
)
if "other" in specs:
other_task = leftcol.text_input(
"You selected 'other' task. Please enter a short hyphen-separated description for the task:",
value="my-task-description",
)
leftcol.write(f"Registering {task_category}-other-{other_task} task")
specs[specs.index("other")] = f"{task_category}-other-{other_task}"
task_specifics += specs
state["task_ids"] = task_specifics
#
# LANGUAGES
#
leftcol.markdown("### Languages")
state["multilinguality"] = multiselect(
leftcol,
"Monolingual?",
"Does the dataset contain more than one language?",
values=state["multilinguality"],
valid_set=list(known_multilingualities.keys()),
format_func=lambda m: f"{m} : {known_multilingualities[m]}",
)
if "other" in state["multilinguality"]:
other_multilinguality = leftcol.text_input(
"You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:",
value="my-multilinguality",
)
leftcol.write(f"Registering other-{other_multilinguality} multilinguality")
state["multilinguality"][state["multilinguality"].index("other")] = f"other-{other_multilinguality}"
valid_values, invalid_values = list(), list()
for langtag in state["languages"]:
try:
lc.get(langtag)
valid_values.append(langtag)
except:
invalid_values.append(langtag)
leftcol.markdown("#### Languages")
if len(invalid_values) > 0:
leftcol.markdown("Found the following invalid values:")
leftcol.error(invalid_values)
langtags = leftcol.text_area(
"What languages are represented in the dataset? expected format is BCP47 tags separated for ';' e.g. 'en-US;fr-FR'",
value=";".join(valid_values),
)
state["languages"] = langtags.strip().split(";") if langtags.strip() != "" else []
#
# DATASET CREATORS & ORIGINS
#
leftcol.markdown("### Dataset creators")
state["language_creators"] = multiselect(
leftcol,
"Data origin",
"Where does the text in the dataset come from?",
values=state["language_creators"],
valid_set=known_creators["language"],
)
state["annotations_creators"] = multiselect(
leftcol,
"Annotations origin",
"Where do the annotations in the dataset come from?",
values=state["annotations_creators"],
valid_set=known_creators["annotations"],
)
#
# LICENSES
#
state["licenses"] = multiselect(
leftcol,
"Licenses",
"What licenses is the dataset under?",
valid_set=list(known_licenses.keys()),
values=state["licenses"],
format_func=lambda l: f"{l} : {known_licenses[l]}",
)
if "other" in state["licenses"]:
other_license = st.text_input(
"You selected 'other' type of license. Please enter a short hyphen-separated description:",
value="my-license",
)
st.write(f"Registering other-{other_license} license")
state["licenses"][state["licenses"].index("other")] = f"other-{other_license}"
#
# LINK TO SUPPORTED DATASETS
#
pre_select_ext_a = []
if "original" in state["source_datasets"]:
pre_select_ext_a += ["original"]
if any([p.startswith("extended") for p in state["source_datasets"]]):
pre_select_ext_a += ["extended"]
state["source_datasets"] = multiselect(
leftcol,
"Relations to existing work",
"Does the dataset contain original data and/or was it extended from other datasets?",
values=pre_select_ext_a,
valid_set=["original", "extended"],
)
if "extended" in state["source_datasets"]:
pre_select_ext_b = [p.split("|")[1] for p in state["source_datasets"] if p.startswith("extended|")]
extended_sources = multiselect(
leftcol,
"Linked datasets",
"Which other datasets does this one use data from?",
values=pre_select_ext_b,
valid_set=dataset_ids + ["other"],
)
# flush placeholder
state["source_datasets"].remove("extended")
state["source_datasets"] += [f"extended|{src}" for src in extended_sources]
#
# SIZE CATEGORY
#
leftcol.markdown("### Size category")
logging.info(initial_infos[initial_info_cfg]["splits"] if initial_infos is not None else 0)
initial_num_examples = (
sum([dct.get("num_examples", 0) for _split, dct in initial_infos[initial_info_cfg].get("splits", dict()).items()])
if initial_infos is not None
else -1
)
if initial_num_examples >= 0:
initial_size_categories = [map_num_examples_to_size_category(initial_num_examples)]
else:
initial_size_categories = []
current_size_cats = multiselect(
leftcol,
f"Size category",
f"How many samples are there in the dataset?",
values=initial_size_categories,
valid_set=known_size_categories,
)
if initial_size_categories:
leftcol.markdown(f"Computed size category from automatically generated dataset info to: `{initial_size_categories}`")
prev_size_cats = state.get("size_categories") or []
ok, nonok = split_known(prev_size_cats, known_size_categories)
if len(nonok) > 0:
leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}")
state["size_categories"] = current_size_cats
########################
## Show results
########################
rightcol.markdown(
f"""
### Finalized tag set
"""
)
if is_state_empty(state):
rightcol.markdown("❌ This is an invalid tagset: it's empty!")
else:
validate_dict(rightcol, state)
rightcol.markdown(
f"""
```yaml
{yaml.dump(state)}
```
---
#### Arbitrary yaml validator
This is a standalone tool, it is useful to check for errors on an existing tagset or modifying directly the text rather than the UI on the left.
""",
)
yamlblock = rightcol.text_area("Input your yaml here")
if yamlblock.strip() != "":
inputdict = yaml.safe_load(yamlblock)
validate_dict(rightcol, inputdict)