Spaces:
Runtime error
Runtime error
File size: 9,011 Bytes
c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 e6b354c c1e5d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
#pip install fastapi ###for fastapi
#pip install uvicorn ###for server. to run the api serice from terminal: uvicorn main:app --reload
#pip install gunicorn ###gunicorn --bind 0.0.0.0:8000 -k uvicorn.workers.UvicornWorker main:app
#pip install python-multipart ###for UploadFile
#pip install pillow ###for PIL
#pip install transformers ###for transformers
#pip install torch ###for torch
#pip install sentencepiece ###for AutoTokenizer
#pip install -U cos-python-sdk-v5 ###腾讯云对象存储SDK(COS-SDK)
#pip install -q -U google-generativeai
# from typing import Optional
# from fastapi import FastAPI, Header
# #from transformers import pipeline, EfficientNetImageProcessor, EfficientNetForImageClassification, AutoTokenizer, AutoModelForSeq2SeqLM
# import torch
# from transformers import EfficientNetImageProcessor, EfficientNetForImageClassification, pipeline
# from models import ItemInHistory, ItemUploaded, ServiceLoginInfo
# from openai import OpenAI
# import sys, os, logging
# import json, requests
from fastapi import FastAPI
import sys, logging, os
from models import Item2AI, AI2Item
import google.generativeai as genai
import urllib.parse as urlparse
from qcloud_cos import CosConfig, CosS3Client
from PIL import Image
# init app and logging
app = FastAPI()
logging.basicConfig(level=logging.INFO, stream=sys.stdout)
# load google gemini models
genai.configure(api_key=os.environ.get("GOOGLE_API_KEY"))
gemini_pro = genai.GenerativeModel('gemini-pro')
logging.info("google gemini-pro model loaded successfully.")
gemini_pro_vision = genai.GenerativeModel('gemini-pro-vision')
logging.info("google gemini-pro-vision model loaded successfully.")
# init tencent cos
cos_secret_id = os.environ['COS_SECRET_ID']
cos_secret_key = os.environ['COS_SECRET_KEY']
cos_region = 'ap-shanghai'
cos_bucket = '7072-prod-3g52ms9o7a81f23c-1324125412'
token = None
scheme = 'https'
config = CosConfig(Region=cos_region, SecretId=cos_secret_id, SecretKey=cos_secret_key, Token=token, Scheme=scheme)
client = CosS3Client(config)
logging.info(f"tencent cos init succeeded.")
# Route to create an item
@app.post("/firstturn/")
async def ai_first_turn(item: Item2AI):
logging.info("ai_first_turn...")
logging.info("item:", item)
# response = gemini_pro.generate_content("What is the meaning of life?")
# logging.info(response.text)
url = urlparse.urlparse(item.item_fileurl)
key = url[2][1::]
bucket = url[1].split('.')[1]
contentfile = key.split('/')[1]
historyid = contentfile.split('.')[0]
response = client.get_object(
Bucket = bucket,
Key = key
)
response['Body'].get_stream_to_file(contentfile)
ai2item = AI2Item(
upload_id = item.upload_id,
union_id = item.union_id,
item_fileurl = item.item_fileurl,
item_mediatype = item.item_mediatype,
upload_datetime = item.upload_datetime,
ai_feedback = ""
)
if item.item_mediatype == "image":
# Opening the image using PIL
img = Image.open(contentfile)
logging.info(f"image file {contentfile} is opened.")
response = gemini_pro_vision.generate_content(["Describe this picture in Chinese with plenty of details.", img])
ai2item.ai_feedback = response.text
else:
ai2item.ai_feedback = "不是image类型,暂不能识别"
logging.info(ai2item)
return(ai2item)
# try:
# ai_model_bc_preprocessor = EfficientNetImageProcessor.from_pretrained("./birds-classifier-efficientnetb2")
# ai_model_bc_model = EfficientNetForImageClassification.from_pretrained("./birds-classifier-efficientnetb2")
# logging.info(f"local model dennisjooo/Birds-Classifier-EfficientNetB2 loaded.")
# except Exception as e:
# logging.error(e)
# try:
# openai_client = OpenAI(
# api_key=os.environ.get("OPENAI_API_KEY"),
# )
# # prompt = """你是一个鸟类学家,用中文回答关于鸟类的问题。你的回答需要满足以下要求:
# # 1. 你的回答必须是中文
# # 2. 回答限制在100个字以内"""
# # conv = Conversation(open_client, prompt, 3)
# logging.info(f"openai chat model loaded.")
# except Exception as e:
# logging.error(e)
# try:
# ai_model_bc_pipe= pipeline("image-classification", model="dennisjooo/Birds-Classifier-EfficientNetB2")
# logging.info(f"remote model dennisjooo/Birds-Classifier-EfficientNetB2 loaded.")
# except Exception as e:
# print(e)
#try:
# ai_model_ez_preprocessor = AutoTokenizer.from_pretrained("./opus-mt-en-zh")
# ai_model_ez_model = AutoModelForSeq2SeqLM.from_pretrained("./opus-mt-en-zh")
# print(f"local model Helsinki-NLP/opus-mt-en-zh loaded.")
#except Exception as e:
# print(e)
#try:
# ai_model_ez_pipe= pipeline(task="translation_en_to_zh", model="Helsinki-NLP/opus-mt-en-zh", device=0)
# print(f"remote model Helsinki-NLP/opus-mt-en-zh loaded.")
#except Exception as e:
# print(e)
# def bird_classifier(image_file: str) -> str:
# # Opening the image using PIL
# img = Image.open(image_file)
# logging.info(f"image file {image_file} is opened.")
# result:str = ""
# try:
# inputs = ai_model_bc_preprocessor(img, return_tensors="pt")
# # Running the inference
# with torch.no_grad():
# logits = ai_model_bc_model(**inputs).logits
# # Getting the predicted label
# predicted_label = logits.argmax(-1).item()
# result = ai_model_bc_model.config.id2label[predicted_label]
# logging.info(f"{ai_model_bc_model.config.id2label[predicted_label]}:{ai_model_bc_pipe(img)[0]['label']}")
# except Exception as e:
# logging.error(e)
# logging.info(result)
# return result
# def text_en_zh(text_en: str) -> str:
# text_zh = ""
# if ai_model_ez_status is MODEL_STATUS.LOCAL:
# input = ai_model_ez_preprocessor(text_en)
# translated = ai_model_ez_model.generate(**ai_model_ez_preprocessor(text_en, return_tensors="pt", padding=True))
# for t in translated:
# text_zh += ai_model_ez_preprocessor.decode(t, skip_special_tokens=True)
# elif ai_model_ez_status is MODEL_STATUS.REMOTE:
# text_zh = ai_model_ez_pipe(text_en)
# return text_zh
# # Route to list all items uploaded by a specific user by unionid
# # @app.get("/items/{user_unionid}")
# # def list_items(user_unionid: str) -> dict[str, list[ItemInHistory]]:
# # logging.info("list_items")
# # logging.info(user_unionid)
# # items: list[ItemInHistory] = []
# # response = client.list_objects(
# # Bucket=cos_bucket,
# # Prefix=f'{user_unionid}/history/'
# # )
# # logging.info(response['Contents'])
# # for obj in response['Contents']:
# # key:str = obj['Key']
# # response = client.get_object(
# # Bucket = cos_bucket,
# # Key = key
# # )
# # localfile = key.split('/')[2]
# # response['Body'].get_stream_to_file(localfile)
# # item = itemFromJsonFile(localfile)
# # items.append(item)
# return {"items": items}
# # Route to list all items uploaded by a specific user by unionid from header
# @app.get("/items/")
# def list_items_byheader(x_wx_openid: Optional[str]=Header(None)) -> dict[str, list[ItemInHistory]]:
# logging.info("list_items_byheader")
# logging.info(x_wx_openid)
# items: list[ItemInHistory] = []
# response = client.list_objects(
# Bucket=cos_bucket,
# Prefix=f'{x_wx_openid}/history/'
# )
# logging.info(response['Contents'])
# for obj in response['Contents']:
# key:str = obj['Key']
# response = client.get_object(
# Bucket = cos_bucket,
# Key = key
# )
# localfile = key.split('/')[2]
# response['Body'].get_stream_to_file(localfile)
# item = itemFromJsonFile(localfile)
# items.append(item)
# return {"items": items}
# def itemFromJsonFile(jsonfile: str) -> ItemInHistory:
# f = open(jsonfile, 'r')
# content = f.read()
# a = json.loads(content)
# f.close()
# return ItemInHistory(history_id = a['history_id'],union_id = a['union_id'],
# item_fileurl = a['item_fileurl'],item_mediatype = a["item_mediatype"],
# upload_datetime = a["upload_datetime"],ai_feedback = a['ai_feedback'])
# def itemToJsonFile(item: ItemInHistory):
# history_json = {
# "history_id": item.history_id,
# "union_id": item.union_id,
# "item_fileurl": item.item_fileurl,
# "item_mediatype": item.item_mediatype,
# "upload_datetime": item.upload_datetime,
# "ai_feedback": item.ai_feedback
# }
# b = json.dumps(history_json)
# historyfile = f'{item.history_id}.json'
# f = open(historyfile, 'w')
# f.write(b)
# f.close()
# return historyfile
|