|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import torch |
|
import numpy as np |
|
import PIL.Image |
|
from PIL.ImageOps import exif_transpose |
|
import torchvision.transforms as tvf |
|
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" |
|
import cv2 |
|
|
|
try: |
|
from pillow_heif import register_heif_opener |
|
register_heif_opener() |
|
heif_support_enabled = True |
|
except ImportError: |
|
heif_support_enabled = False |
|
|
|
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) |
|
|
|
|
|
def img_to_arr( img ): |
|
if isinstance(img, str): |
|
img = imread_cv2(img) |
|
return img |
|
|
|
def imread_cv2(path, options=cv2.IMREAD_COLOR): |
|
""" Open an image or a depthmap with opencv-python. |
|
""" |
|
if path.endswith(('.exr', 'EXR')): |
|
options = cv2.IMREAD_ANYDEPTH |
|
img = cv2.imread(path, options) |
|
if img is None: |
|
raise IOError(f'Could not load image={path} with {options=}') |
|
if img.ndim == 3: |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
return img |
|
|
|
|
|
def rgb(ftensor, true_shape=None): |
|
if isinstance(ftensor, list): |
|
return [rgb(x, true_shape=true_shape) for x in ftensor] |
|
if isinstance(ftensor, torch.Tensor): |
|
ftensor = ftensor.detach().cpu().numpy() |
|
if ftensor.ndim == 3 and ftensor.shape[0] == 3: |
|
ftensor = ftensor.transpose(1, 2, 0) |
|
elif ftensor.ndim == 4 and ftensor.shape[1] == 3: |
|
ftensor = ftensor.transpose(0, 2, 3, 1) |
|
if true_shape is not None: |
|
H, W = true_shape |
|
ftensor = ftensor[:H, :W] |
|
if ftensor.dtype == np.uint8: |
|
img = np.float32(ftensor) / 255 |
|
else: |
|
img = (ftensor * 0.5) + 0.5 |
|
return img.clip(min=0, max=1) |
|
|
|
|
|
def _resize_pil_image(img, long_edge_size): |
|
S = max(img.size) |
|
if S > long_edge_size: |
|
interp = PIL.Image.LANCZOS |
|
elif S <= long_edge_size: |
|
interp = PIL.Image.BICUBIC |
|
new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size) |
|
return img.resize(new_size, interp) |
|
|
|
|
|
def load_images(images, cog_seg_maps, size, square_ok=False, verbose=True): |
|
""" open and convert all images in a list or folder to proper input format for DUSt3R |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pil_images = images.pil_images |
|
|
|
mean_colors = {} |
|
mean_colors_cnt = {} |
|
for i, img in enumerate(pil_images): |
|
|
|
img_np = np.array(img) |
|
seg_map = cog_seg_maps[i] |
|
unique_labels = np.unique(seg_map) |
|
for label in unique_labels: |
|
if label == -1: |
|
continue |
|
mask = (seg_map == label) |
|
mean_color = img_np[mask].mean(axis=0) |
|
if label in mean_colors.keys(): |
|
mean_colors[label] += mean_color |
|
mean_colors_cnt[label] += 1 |
|
else: |
|
mean_colors[label] = mean_color |
|
mean_colors_cnt[label] = 1 |
|
|
|
for key in mean_colors.keys(): |
|
mean_colors[key] /= mean_colors_cnt[key] |
|
|
|
imgs = [] |
|
for i, img in enumerate(pil_images): |
|
img = pil_images[i] |
|
|
|
img_np = np.array(img) |
|
smoothed_image = np.zeros_like(img_np) |
|
seg_map = cog_seg_maps[i] |
|
unique_labels = np.unique(seg_map) |
|
for label in unique_labels: |
|
mask = (seg_map == label) |
|
if label == -1: |
|
smoothed_image[mask] = img_np[mask] |
|
continue |
|
smoothed_image[mask] = mean_colors[label] |
|
smoothed_image = cv2.addWeighted(img_np, 0.05, smoothed_image, 0.95, 0) |
|
smoothed_image = PIL.Image.fromarray(smoothed_image) |
|
|
|
W1, H1 = img.size |
|
if size == 224: |
|
|
|
img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1))) |
|
smoothed_image = _resize_pil_image(smoothed_image, round(size * max(W1/H1, H1/W1))) |
|
else: |
|
|
|
img = _resize_pil_image(img, size) |
|
smoothed_image = _resize_pil_image(smoothed_image, size) |
|
|
|
W, H = img.size |
|
cx, cy = W//2, H//2 |
|
if size == 224: |
|
half = min(cx, cy) |
|
img = img.crop((cx-half, cy-half, cx+half, cy+half)) |
|
smoothed_image = smoothed_image.crop((cx-half, cy-half, cx+half, cy+half)) |
|
else: |
|
halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8 |
|
if not (square_ok) and W == H: |
|
halfh = 3*halfw/4 |
|
img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh)) |
|
smoothed_image = smoothed_image.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh)) |
|
|
|
|
|
|
|
|
|
|
|
imgs.append(dict(img=ImgNorm(img)[None], ori_img=ImgNorm(img)[None], smoothed_img=ImgNorm(smoothed_image)[None], true_shape=np.int32( |
|
[img.size[::-1]]), idx=len(imgs), instance=str(len(imgs)))) |
|
|
|
if verbose: |
|
print(f' (Found {len(imgs)} images)') |
|
return imgs |
|
|