PE3R / app.py
hujiecpp's picture
init project
399850e
raw
history blame
24.8 kB
import os
import sys
sys.path.append(os.path.abspath('./modules'))
# import math
import tempfile
import gradio
import torch
import spaces
import numpy as np
import functools
import trimesh
import copy
# from PIL import Image
from scipy.spatial.transform import Rotation
from modules.pe3r.images import Images
from modules.dust3r.inference import inference
from modules.dust3r.image_pairs import make_pairs
from modules.dust3r.utils.image import load_images #, rgb
from modules.dust3r.utils.device import to_numpy
from modules.dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from modules.dust3r.cloud_opt import global_aligner, GlobalAlignerMode
# from copy import deepcopy
# import cv2
# from typing import Any, Dict, Generator,List
# import matplotlib.pyplot as pl
# from modules.mobilesamv2.utils.transforms import ResizeLongestSide
# from modules.pe3r.models import Models
import torchvision.transforms as tvf
# sys.path.append(os.path.abspath('./modules/ultralytics'))
# from transformers import AutoTokenizer, AutoModel, AutoProcessor, SamModel
# from modules.mast3r.model import AsymmetricMASt3R
# from modules.sam2.build_sam import build_sam2_video_predictor
# from modules.mobilesamv2.promt_mobilesamv2 import ObjectAwareModel
# from modules.mobilesamv2 import sam_model_registry
# from sam2.sam2_video_predictor import SAM2VideoPredictor
from modules.mast3r.model import AsymmetricMASt3R
silent = False
# device = 'cpu' #'cuda' if torch.cuda.is_available() else 'cpu' # #
# pe3r = Models('cpu') # 'cpu' #
# print(device)
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
cam_color=None, as_pointcloud=False,
transparent_cams=False):
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
pts3d = to_numpy(pts3d)
imgs = to_numpy(imgs)
focals = to_numpy(focals)
cams2world = to_numpy(cams2world)
scene = trimesh.Scene()
# full pointcloud
if as_pointcloud:
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
scene.add_geometry(pct)
else:
meshes = []
for i in range(len(imgs)):
meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i]))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
# add each camera
for i, pose_c2w in enumerate(cams2world):
if isinstance(cam_color, list):
camera_edge_color = cam_color[i]
else:
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
add_scene_cam(scene, pose_c2w, camera_edge_color,
None if transparent_cams else imgs[i], focals[i],
imsize=imgs[i].shape[1::-1], screen_width=cam_size)
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
outfile = os.path.join(outdir, 'scene.glb')
if not silent:
print('(exporting 3D scene to', outfile, ')')
scene.export(file_obj=outfile)
return outfile
def get_3D_model_from_scene(outdir, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False,
clean_depth=False, transparent_cams=False, cam_size=0.05):
"""
extract 3D_model (glb file) from a reconstructed scene
"""
if scene is None:
return None
# post processes
if clean_depth:
scene = scene.clean_pointcloud()
if mask_sky:
scene = scene.mask_sky()
# get optimized values from scene
rgbimg = scene.ori_imgs
focals = scene.get_focals().cpu()
cams2world = scene.get_im_poses().cpu()
# 3D pointcloud from depthmap, poses and intrinsics
pts3d = to_numpy(scene.get_pts3d())
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr)))
msk = to_numpy(scene.get_masks())
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
transparent_cams=transparent_cams, cam_size=cam_size)
# def mask_nms(masks, threshold=0.8):
# keep = []
# mask_num = len(masks)
# suppressed = np.zeros((mask_num), dtype=np.int64)
# for i in range(mask_num):
# if suppressed[i] == 1:
# continue
# keep.append(i)
# for j in range(i + 1, mask_num):
# if suppressed[j] == 1:
# continue
# intersection = (masks[i] & masks[j]).sum()
# if min(intersection / masks[i].sum(), intersection / masks[j].sum()) > threshold:
# suppressed[j] = 1
# return keep
# def filter(masks, keep):
# ret = []
# for i, m in enumerate(masks):
# if i in keep: ret.append(m)
# return ret
# def mask_to_box(mask):
# if mask.sum() == 0:
# return np.array([0, 0, 0, 0])
# # Get the rows and columns where the mask is 1
# rows = np.any(mask, axis=1)
# cols = np.any(mask, axis=0)
# # Get top, bottom, left, right edges
# top = np.argmax(rows)
# bottom = len(rows) - 1 - np.argmax(np.flip(rows))
# left = np.argmax(cols)
# right = len(cols) - 1 - np.argmax(np.flip(cols))
# return np.array([left, top, right, bottom])
# def box_xyxy_to_xywh(box_xyxy):
# box_xywh = deepcopy(box_xyxy)
# box_xywh[2] = box_xywh[2] - box_xywh[0]
# box_xywh[3] = box_xywh[3] - box_xywh[1]
# return box_xywh
# def get_seg_img(mask, box, image):
# image = image.copy()
# x, y, w, h = box
# # image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
# box_area = w * h
# mask_area = mask.sum()
# if 1 - (mask_area / box_area) < 0.2:
# image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
# else:
# random_values = np.random.randint(0, 255, size=image.shape, dtype=np.uint8)
# image[mask == 0] = random_values[mask == 0]
# seg_img = image[y:y+h, x:x+w, ...]
# return seg_img
# def pad_img(img):
# h, w, _ = img.shape
# l = max(w,h)
# pad = np.zeros((l,l,3), dtype=np.uint8) #
# if h > w:
# pad[:,(h-w)//2:(h-w)//2 + w, :] = img
# else:
# pad[(w-h)//2:(w-h)//2 + h, :, :] = img
# return pad
# def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
# assert len(args) > 0 and all(
# len(a) == len(args[0]) for a in args
# ), "Batched iteration must have inputs of all the same size."
# n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
# for b in range(n_batches):
# yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
# def slerp(u1, u2, t):
# """
# Perform spherical linear interpolation (Slerp) between two unit vectors.
# Args:
# - u1 (torch.Tensor): First unit vector, shape (1024,)
# - u2 (torch.Tensor): Second unit vector, shape (1024,)
# - t (float): Interpolation parameter
# Returns:
# - torch.Tensor: Interpolated vector, shape (1024,)
# """
# # Compute the dot product
# dot_product = torch.sum(u1 * u2)
# # Ensure the dot product is within the valid range [-1, 1]
# dot_product = torch.clamp(dot_product, -1.0, 1.0)
# # Compute the angle between the vectors
# theta = torch.acos(dot_product)
# # Compute the coefficients for the interpolation
# sin_theta = torch.sin(theta)
# if sin_theta == 0:
# # Vectors are parallel, return a linear interpolation
# return u1 + t * (u2 - u1)
# s1 = torch.sin((1 - t) * theta) / sin_theta
# s2 = torch.sin(t * theta) / sin_theta
# # Perform the interpolation
# return s1 * u1 + s2 * u2
# def slerp_multiple(vectors, t_values):
# """
# Perform spherical linear interpolation (Slerp) for multiple vectors.
# Args:
# - vectors (torch.Tensor): Tensor of vectors, shape (n, 1024)
# - a_values (torch.Tensor): Tensor of values corresponding to each vector, shape (n,)
# Returns:
# - torch.Tensor: Interpolated vector, shape (1024,)
# """
# n = vectors.shape[0]
# # Initialize the interpolated vector with the first vector
# interpolated_vector = vectors[0]
# # Perform Slerp iteratively
# for i in range(1, n):
# # Perform Slerp between the current interpolated vector and the next vector
# t = t_values[i] / (t_values[i] + t_values[i-1])
# interpolated_vector = slerp(interpolated_vector, vectors[i], t)
# return interpolated_vector
# @torch.no_grad
# def get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_image, yolov8_image, original_size, input_size, transform):
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# sam_mask=[]
# img_area = original_size[0] * original_size[1]
# obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=1024,conf=0.25,iou=0.95,verbose=False)
# input_boxes1 = obj_results[0].boxes.xyxy
# input_boxes1 = input_boxes1.cpu().numpy()
# input_boxes1 = transform.apply_boxes(input_boxes1, original_size)
# input_boxes = torch.from_numpy(input_boxes1).to(device)
# # obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=512,conf=0.25,iou=0.9,verbose=False)
# # input_boxes2 = obj_results[0].boxes.xyxy
# # input_boxes2 = input_boxes2.cpu().numpy()
# # input_boxes2 = transform.apply_boxes(input_boxes2, original_size)
# # input_boxes2 = torch.from_numpy(input_boxes2).to(device)
# # input_boxes = torch.cat((input_boxes1, input_boxes2), dim=0)
# input_image = mobilesamv2.preprocess(sam1_image)
# image_embedding = mobilesamv2.image_encoder(input_image)['last_hidden_state']
# image_embedding=torch.repeat_interleave(image_embedding, 320, dim=0)
# prompt_embedding=mobilesamv2.prompt_encoder.get_dense_pe()
# prompt_embedding=torch.repeat_interleave(prompt_embedding, 320, dim=0)
# for (boxes,) in batch_iterator(320, input_boxes):
# with torch.no_grad():
# image_embedding=image_embedding[0:boxes.shape[0],:,:,:]
# prompt_embedding=prompt_embedding[0:boxes.shape[0],:,:,:]
# sparse_embeddings, dense_embeddings = mobilesamv2.prompt_encoder(
# points=None,
# boxes=boxes,
# masks=None,)
# low_res_masks, _ = mobilesamv2.mask_decoder(
# image_embeddings=image_embedding,
# image_pe=prompt_embedding,
# sparse_prompt_embeddings=sparse_embeddings,
# dense_prompt_embeddings=dense_embeddings,
# multimask_output=False,
# simple_type=True,
# )
# low_res_masks=mobilesamv2.postprocess_masks(low_res_masks, input_size, original_size)
# sam_mask_pre = (low_res_masks > mobilesamv2.mask_threshold)
# for mask in sam_mask_pre:
# if mask.sum() / img_area > 0.002:
# sam_mask.append(mask.squeeze(1))
# sam_mask=torch.cat(sam_mask)
# sorted_sam_mask = sorted(sam_mask, key=(lambda x: x.sum()), reverse=True)
# keep = mask_nms(sorted_sam_mask)
# ret_mask = filter(sorted_sam_mask, keep)
# return ret_mask
# @torch.no_grad
# def get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2):
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# cog_seg_maps = []
# rev_cog_seg_maps = []
# inference_state = sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
# mask_num = 0
# sam1_images = images.sam1_images
# sam1_images_size = images.sam1_images_size
# np_images = images.np_images
# np_images_size = images.np_images_size
# sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform)
# for mask in sam1_masks:
# _, _, _ = sam2.add_new_mask(
# inference_state=inference_state,
# frame_idx=0,
# obj_id=mask_num,
# mask=mask,
# )
# mask_num += 1
# video_segments = {} # video_segments contains the per-frame segmentation results
# for out_frame_idx, out_obj_ids, out_mask_logits in sam2.propagate_in_video(inference_state):
# sam2_masks = (out_mask_logits > 0.0).squeeze(1)
# video_segments[out_frame_idx] = {
# out_obj_id: sam2_masks[i].cpu().numpy()
# for i, out_obj_id in enumerate(out_obj_ids)
# }
# if out_frame_idx == 0:
# continue
# sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform)
# for sam1_mask in sam1_masks:
# flg = 1
# for sam2_mask in sam2_masks:
# # print(sam1_mask.shape, sam2_mask.shape)
# area1 = sam1_mask.sum()
# area2 = sam2_mask.sum()
# intersection = (sam1_mask & sam2_mask).sum()
# if min(intersection / area1, intersection / area2) > 0.25:
# flg = 0
# break
# if flg:
# video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy()
# mask_num += 1
# multi_view_clip_feats = torch.zeros((mask_num+1, 1024))
# multi_view_clip_feats_map = {}
# multi_view_clip_area_map = {}
# for now_frame in range(0, len(video_segments), 1):
# image = np_images[now_frame]
# seg_img_list = []
# out_obj_id_list = []
# out_obj_mask_list = []
# out_obj_area_list = []
# # NOTE: background: -1
# rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64)
# sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False)
# for out_obj_id, mask in sorted_dict_items:
# if mask.sum() == 0:
# continue
# rev_seg_map[mask] = out_obj_id
# rev_cog_seg_maps.append(rev_seg_map)
# seg_map = -np.ones(image.shape[:2], dtype=np.int64)
# sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=True)
# for out_obj_id, mask in sorted_dict_items:
# if mask.sum() == 0:
# continue
# box = np.int32(box_xyxy_to_xywh(mask_to_box(mask)))
# if box[2] == 0 and box[3] == 0:
# continue
# # print(box)
# seg_img = get_seg_img(mask, box, image)
# pad_seg_img = cv2.resize(pad_img(seg_img), (256,256))
# seg_img_list.append(pad_seg_img)
# seg_map[mask] = out_obj_id
# out_obj_id_list.append(out_obj_id)
# out_obj_area_list.append(np.count_nonzero(mask))
# out_obj_mask_list.append(mask)
# if len(seg_img_list) == 0:
# cog_seg_maps.append(seg_map)
# continue
# seg_imgs = np.stack(seg_img_list, axis=0) # b,H,W,3
# seg_imgs = torch.from_numpy(seg_imgs).permute(0,3,1,2) # / 255.0
# inputs = siglip_processor(images=seg_imgs, return_tensors="pt")
# inputs = {key: value.to(device) for key, value in inputs.items()}
# image_features = siglip.get_image_features(**inputs)
# image_features = image_features / image_features.norm(dim=-1, keepdim=True)
# image_features = image_features.detach().cpu()
# for i in range(len(out_obj_mask_list)):
# for j in range(i + 1, len(out_obj_mask_list)):
# mask1 = out_obj_mask_list[i]
# mask2 = out_obj_mask_list[j]
# intersection = np.logical_and(mask1, mask2).sum()
# area1 = out_obj_area_list[i]
# area2 = out_obj_area_list[j]
# if min(intersection / area1, intersection / area2) > 0.025:
# conf1 = area1 / (area1 + area2)
# # conf2 = area2 / (area1 + area2)
# image_features[j] = slerp(image_features[j], image_features[i], conf1)
# for i, clip_feat in enumerate(image_features):
# id = out_obj_id_list[i]
# if id in multi_view_clip_feats_map.keys():
# multi_view_clip_feats_map[id].append(clip_feat)
# multi_view_clip_area_map[id].append(out_obj_area_list[i])
# else:
# multi_view_clip_feats_map[id] = [clip_feat]
# multi_view_clip_area_map[id] = [out_obj_area_list[i]]
# cog_seg_maps.append(seg_map)
# del image_features
# for i in range(mask_num):
# if i in multi_view_clip_feats_map.keys():
# clip_feats = multi_view_clip_feats_map[i]
# mask_area = multi_view_clip_area_map[i]
# multi_view_clip_feats[i] = slerp_multiple(torch.stack(clip_feats), np.stack(mask_area))
# else:
# multi_view_clip_feats[i] = torch.zeros((1024))
# multi_view_clip_feats[mask_num] = torch.zeros((1024))
# return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats
@spaces.GPU(duration=30)
def get_reconstructed_scene(outdir, filelist, schedule='linear', niter=300, min_conf_thr=3.0,
as_pointcloud=True, mask_sky=False, clean_depth=True, transparent_cams=True, cam_size=0.05,
scenegraph_type='complete', winsize=1, refid=0):
"""
from a list of images, run dust3r inference, global aligner.
then run get_3D_model_from_scene
"""
device = 'cuda' if torch.cuda.is_available() else 'cpu'
MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)
# sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device)
# siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device)
# siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256")
# SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt'
# mobilesamv2 = sam_model_registry['sam_vit_h'](None)
# sam1 = SamModel.from_pretrained('facebook/sam-vit-huge')
# image_encoder = sam1.vision_encoder
# prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP)
# mobilesamv2.prompt_encoder = prompt_encoder
# mobilesamv2.mask_decoder = mask_decoder
# mobilesamv2.image_encoder=image_encoder
# mobilesamv2.to(device=device)
# mobilesamv2.eval()
# YOLO8_CKP='./checkpoints/ObjectAwareModel.pt'
# yolov8 = ObjectAwareModel(YOLO8_CKP)
if len(filelist) < 2:
raise gradio.Error("Please input at least 2 images.")
images = Images(filelist=filelist, device=device)
# try:
# cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2)
# imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
# except Exception as e:
rev_cog_seg_maps = []
for tmp_img in images.np_images:
rev_seg_map = -np.ones(tmp_img.shape[:2], dtype=np.int64)
rev_cog_seg_maps.append(rev_seg_map)
cog_seg_maps = rev_cog_seg_maps
cog_feats = torch.zeros((1, 1024))
imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
if len(imgs) == 1:
imgs = [imgs[0], copy.deepcopy(imgs[0])]
imgs[1]['idx'] = 1
if scenegraph_type == "swin":
scenegraph_type = scenegraph_type + "-" + str(winsize)
elif scenegraph_type == "oneref":
scenegraph_type = scenegraph_type + "-" + str(refid)
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent)
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
scene_1 = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
lr = 0.01
# if mode == GlobalAlignerMode.PointCloudOptimizer:
loss = scene_1.compute_global_alignment(tune_flg=True, init='mst', niter=niter, schedule=schedule, lr=lr)
try:
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
for i in range(len(imgs)):
# print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None])
imgs[i]['img'] = ImgNorm(scene_1.imgs[i])[None]
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent)
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
scene = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
ori_imgs = scene.ori_imgs
lr = 0.01
# if mode == GlobalAlignerMode.PointCloudOptimizer:
loss = scene.compute_global_alignment(tune_flg=False, init='mst', niter=niter, schedule=schedule, lr=lr)
except Exception as e:
scene = scene_1
scene.imgs = ori_imgs
scene.ori_imgs = ori_imgs
print(e)
outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size)
scene.to('cpu')
torch.cuda.empty_cache()
return scene, outfile
# @spaces.GPU(duration=30)
# def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
# mask_sky, clean_depth, transparent_cams, cam_size):
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# siglip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-large-patch16-256")
# siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device)
# texts = [text]
# inputs = siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
# inputs = {key: value.to(device) for key, value in inputs.items()}
# with torch.no_grad():
# text_feats =siglip.get_text_features(**inputs)
# text_feats = text_feats / text_feats.norm(dim=-1, keepdim=True)
# scene.render_image(text_feats, threshold)
# scene.ori_imgs = scene.rendered_imgs
# outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
# clean_depth, transparent_cams, cam_size)
# return outfile
tmpdirname = tempfile.mkdtemp(suffix='pe3r_gradio_demo')
recon_fun = functools.partial(get_reconstructed_scene, tmpdirname)
# model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname)
# get_3D_object_from_scene_fun = functools.partial(get_3D_object_from_scene, tmpdirname)
with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="PE3R Demo") as demo:
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
scene = gradio.State(None)
gradio.HTML('<h2 style="text-align: center;">PE3R Demo</h2>')
with gradio.Column():
inputfiles = gradio.File(file_count="multiple")
run_btn = gradio.Button("Reconstruct")
with gradio.Row():
text_input = gradio.Textbox(label="Query Text")
threshold = gradio.Slider(label="Threshold", value=0.85, minimum=0.0, maximum=1.0, step=0.01)
find_btn = gradio.Button("Find")
outmodel = gradio.Model3D()
# events
run_btn.click(fn=recon_fun,
inputs=[inputfiles],
outputs=[scene, outmodel]) # , outgallery
# find_btn.click(fn=get_3D_object_from_scene_fun,
# inputs=[text_input, threshold, scene, min_conf_thr, as_pointcloud, mask_sky,
# clean_depth, transparent_cams, cam_size],
# outputs=outmodel)
demo.launch(show_error=True, share=None, server_name=None, server_port=None)