Spaces:
Sleeping
Sleeping
import functools | |
import tensorflow as tf | |
from tensorflow.keras import backend as K | |
from tensorflow.keras import layers | |
from ..layers import Resizing | |
Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same") | |
def MlpBlock( | |
mlp_dim: int, | |
dropout_rate: float = 0.0, | |
use_bias: bool = True, | |
name: str = "mlp_block", | |
): | |
"""A 1-hidden-layer MLP block, applied over the last dimension.""" | |
def apply(x): | |
d = K.int_shape(x)[-1] | |
x = layers.Dense(mlp_dim, use_bias=use_bias, name=f"{name}_Dense_0")(x) | |
x = tf.nn.gelu(x, approximate=True) | |
x = layers.Dropout(dropout_rate)(x) | |
x = layers.Dense(d, use_bias=use_bias, name=f"{name}_Dense_1")(x) | |
return x | |
return apply | |
def UpSampleRatio( | |
num_channels: int, ratio: float, use_bias: bool = True, name: str = "upsample" | |
): | |
"""Upsample features given a ratio > 0.""" | |
def apply(x): | |
n, h, w, c = ( | |
K.int_shape(x)[0], | |
K.int_shape(x)[1], | |
K.int_shape(x)[2], | |
K.int_shape(x)[3], | |
) | |
# Following `jax.image.resize()` | |
x = Resizing( | |
height=int(h * ratio), | |
width=int(w * ratio), | |
method="bilinear", | |
antialias=True, | |
name=f"{name}_resizing_{K.get_uid('Resizing')}", | |
)(x) | |
x = Conv1x1(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_0")(x) | |
return x | |
return apply | |