Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,7 @@ import torch
|
|
3 |
import numpy as np
|
4 |
from transformers import DPTForDepthEstimation, DPTImageProcessor
|
5 |
import gradio as gr
|
6 |
-
import torch.quantization
|
7 |
import torch.nn.utils.prune as prune
|
8 |
-
import asyncio
|
9 |
-
import queue
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
@@ -20,16 +17,17 @@ parameters_to_prune = [
|
|
20 |
prune.global_unstructured(
|
21 |
parameters_to_prune,
|
22 |
pruning_method=prune.L1Unstructured,
|
23 |
-
amount=0.
|
24 |
)
|
25 |
|
26 |
for module, _ in parameters_to_prune:
|
27 |
prune.remove(module, "weight")
|
28 |
|
29 |
-
# Apply quantization after pruning
|
30 |
model = torch.quantization.quantize_dynamic(
|
31 |
model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8
|
32 |
-
)
|
|
|
|
|
33 |
|
34 |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
|
35 |
|
@@ -37,11 +35,8 @@ color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFER
|
|
37 |
|
38 |
input_tensor = torch.zeros((1, 3, 128, 128), dtype=torch.float32, device=device)
|
39 |
|
40 |
-
frame_queue = queue.Queue(maxsize=1)
|
41 |
-
result_queue = queue.Queue(maxsize=1)
|
42 |
-
|
43 |
def preprocess_image(image):
|
44 |
-
return cv2.resize(image, (128,
|
45 |
|
46 |
@torch.inference_mode()
|
47 |
def process_frame(image):
|
@@ -52,55 +47,17 @@ def process_frame(image):
|
|
52 |
|
53 |
predicted_depth = model(input_tensor).predicted_depth
|
54 |
depth_map = predicted_depth.squeeze().cpu().numpy()
|
55 |
-
num_bins = 1000
|
56 |
-
depth_map = np.digitize(depth_map, bins=np.linspace(depth_map.min(), depth_map.max(), num_bins)) - 1
|
57 |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
58 |
depth_map = (depth_map * 255).astype(np.uint8)
|
59 |
depth_map_colored = cv2.applyColorMap(depth_map, cv2.COLORMAP_INFERNO)
|
60 |
|
61 |
return cv2.cvtColor(depth_map_colored, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
frame_count = 0
|
65 |
-
while True:
|
66 |
-
ret, frame = webcam.read()
|
67 |
-
if not ret:
|
68 |
-
break
|
69 |
-
frame_count += 1
|
70 |
-
if frame_count % 5 == 0: # Process every 5th frame
|
71 |
-
if frame_queue.full():
|
72 |
-
frame_queue.get() # Remove old frame if queue is full
|
73 |
-
frame_queue.put(frame)
|
74 |
-
await asyncio.sleep(0.01) # Small delay to prevent blocking
|
75 |
-
|
76 |
-
async def process_frames():
|
77 |
-
while True:
|
78 |
-
if not frame_queue.empty():
|
79 |
-
frame = frame_queue.get()
|
80 |
-
result = process_frame(frame)
|
81 |
-
if result_queue.full():
|
82 |
-
result_queue.get() # Remove old result if queue is full
|
83 |
-
result_queue.put(result)
|
84 |
-
await asyncio.sleep(0.01) # Small delay to prevent blocking
|
85 |
-
|
86 |
-
def get_latest_frame():
|
87 |
-
if result_queue.empty():
|
88 |
-
return None
|
89 |
-
return result_queue.get()
|
90 |
-
|
91 |
-
async def main():
|
92 |
-
webcam = cv2.VideoCapture(0)
|
93 |
-
asyncio.create_task(capture_frames(webcam))
|
94 |
-
asyncio.create_task(process_frames())
|
95 |
-
|
96 |
-
interface = gr.Interface(
|
97 |
-
fn=get_latest_frame,
|
98 |
-
inputs=None,
|
99 |
-
outputs="image",
|
100 |
-
live=True
|
101 |
-
)
|
102 |
-
|
103 |
-
await interface.launch()
|
104 |
-
|
105 |
-
if __name__ == "__main__":
|
106 |
-
asyncio.run(main())
|
|
|
3 |
import numpy as np
|
4 |
from transformers import DPTForDepthEstimation, DPTImageProcessor
|
5 |
import gradio as gr
|
|
|
6 |
import torch.nn.utils.prune as prune
|
|
|
|
|
7 |
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
|
|
|
17 |
prune.global_unstructured(
|
18 |
parameters_to_prune,
|
19 |
pruning_method=prune.L1Unstructured,
|
20 |
+
amount=0.4, # Prune 40% of weights
|
21 |
)
|
22 |
|
23 |
for module, _ in parameters_to_prune:
|
24 |
prune.remove(module, "weight")
|
25 |
|
|
|
26 |
model = torch.quantization.quantize_dynamic(
|
27 |
model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8
|
28 |
+
)
|
29 |
+
|
30 |
+
model = model.to(device)
|
31 |
|
32 |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
|
33 |
|
|
|
35 |
|
36 |
input_tensor = torch.zeros((1, 3, 128, 128), dtype=torch.float32, device=device)
|
37 |
|
|
|
|
|
|
|
38 |
def preprocess_image(image):
|
39 |
+
return cv2.resize(image, (128, 128), interpolation=cv2.INTER_AREA).transpose(2, 0, 1).astype(np.float32) / 255.0
|
40 |
|
41 |
@torch.inference_mode()
|
42 |
def process_frame(image):
|
|
|
47 |
|
48 |
predicted_depth = model(input_tensor).predicted_depth
|
49 |
depth_map = predicted_depth.squeeze().cpu().numpy()
|
|
|
|
|
50 |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
51 |
depth_map = (depth_map * 255).astype(np.uint8)
|
52 |
depth_map_colored = cv2.applyColorMap(depth_map, cv2.COLORMAP_INFERNO)
|
53 |
|
54 |
return cv2.cvtColor(depth_map_colored, cv2.COLOR_BGR2RGB)
|
55 |
+
|
56 |
+
interface = gr.Interface(
|
57 |
+
fn=process_frame,
|
58 |
+
inputs=gr.Image(source="webcam", streaming=True),
|
59 |
+
outputs="image",
|
60 |
+
live=True
|
61 |
+
)
|
62 |
|
63 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|