OPENT2T / app.py
haiengchuihaian
change leaderboard and submit
1eaecb2
raw
history blame
14.2 kB
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval, upload_file
def restart_space():
API.restart_space(repo_id=REPO_ID, token=TOKEN)
# try:
# print(EVAL_REQUESTS_PATH)
# snapshot_download(
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
# )
# except Exception:
# restart_space()
# try:
# print(EVAL_RESULTS_PATH)
# snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
# )
# except Exception:
# restart_space()
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
value=[ c.name for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden]
leaderboard_df = original_df.copy()
# (
# finished_eval_queue_df,
# running_eval_queue_df,
# pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# Searching and filtering
# def update_table(
# hidden_df: pd.DataFrame,
# columns: list,
# type_query: list,
# precision_query: str,
# size_query: list,
# show_deleted: bool,
# query: str,
# ):
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
# filtered_df = filter_queries(query, filtered_df)
# df = select_columns(filtered_df, columns)
# return df
# def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
# return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
# def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
# always_here_cols = [
# AutoEvalColumn.model_type_symbol.name,
# AutoEvalColumn.model.name,
# ]
# # We use COLS to maintain sorting
# filtered_df = df[
# always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
# ]
# return filtered_df
# def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
# final_df = []
# if query != "":
# queries = [q.strip() for q in query.split(";")]
# for _q in queries:
# _q = _q.strip()
# if _q != "":
# temp_filtered_df = search_table(filtered_df, _q)
# if len(temp_filtered_df) > 0:
# final_df.append(temp_filtered_df)
# if len(final_df) > 0:
# filtered_df = pd.concat(final_df)
# filtered_df = filtered_df.drop_duplicates(
# subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
# )
# return filtered_df
# def filter_models(
# df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
# ) -> pd.DataFrame:
# # Show all models
# if show_deleted:
# filtered_df = df
# else: # Show only still on the hub models
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
# type_emoji = [t[0] for t in type_query]
# filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
# filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
# params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
# filtered_df = filtered_df.loc[mask]
# return filtered_df
# print([c.name for c in fields(AutoEvalColumn) if c.never_hidden])
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
# with gr.Row():
# with gr.Column():
# with gr.Row():
# search_bar = gr.Textbox(
# placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
# show_label=False,
# elem_id="search-bar",
# )
# with gr.Row():
# shown_columns = gr.CheckboxGroup(
# choices=[
# c.name
# for c in fields(AutoEvalColumn)
# if not c.hidden and not c.never_hidden and not c.dummy
# ],
# value=[
# c.name
# for c in fields(AutoEvalColumn)
# if c.displayed_by_default and not c.hidden and not c.never_hidden
# ],
# label="Select columns to show",
# elem_id="column-select",
# interactive=True,
# )
# with gr.Row():
# deleted_models_visibility = gr.Checkbox(
# value=False, label="Show gated/private/deleted models", interactive=True
# )
# with gr.Column(min_width=320):
# #with gr.Box(elem_id="box-filter"):
# filter_columns_type = gr.CheckboxGroup(
# label="Model types",
# choices=[t.to_str() for t in ModelType],
# value=[t.to_str() for t in ModelType],
# interactive=True,
# elem_id="filter-columns-type",
# )
# filter_columns_precision = gr.CheckboxGroup(
# label="Precision",
# choices=[i.value.name for i in Precision],
# value=[i.value.name for i in Precision],
# interactive=True,
# elem_id="filter-columns-precision",
# )
# filter_columns_size = gr.CheckboxGroup(
# label="Model sizes (in billions of parameters)",
# choices=list(NUMERIC_INTERVALS.keys()),
# value=list(NUMERIC_INTERVALS.keys()),
# interactive=True,
# elem_id="filter-columns-size",
# )
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + value
+ [AutoEvalColumn.dummy.name]
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
column_widths=["2%", "33%"]
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
# search_bar.submit(
# update_table,
# [
# hidden_leaderboard_table_for_search,
# shown_columns,
# filter_columns_type,
# filter_columns_precision,
# filter_columns_size,
# deleted_models_visibility,
# search_bar,
# ],
# leaderboard_table,
# )
# for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
# selector.change(
# update_table,
# [
# hidden_leaderboard_table_for_search,
# shown_columns,
# filter_columns_type,
# filter_columns_precision,
# filter_columns_size,
# deleted_models_visibility,
# search_bar,
# ],
# leaderboard_table,
# queue=True,
# )
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
# with gr.Column():
# with gr.Accordion(
# f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# finished_eval_table = gr.components.Dataframe(
# value=finished_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# running_eval_table = gr.components.Dataframe(
# value=running_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# pending_eval_table = gr.components.Dataframe(
# value=pending_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your files here!", elem_classes="markdown-text")
with gr.Row():
upload = gr.Interface(fn=upload_file,inputs="file" ,outputs=None)
# with gr.Column():
# model_name_textbox = gr.Textbox(label="Model name")
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
# model_type = gr.Dropdown(
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
# label="Model type",
# multiselect=False,
# value=None,
# interactive=True,
# )
# with gr.Column():
# precision = gr.Dropdown(
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
# label="Precision",
# multiselect=False,
# value="float16",
# interactive=True,
# )
# weight_type = gr.Dropdown(
# choices=[i.value.name for i in WeightType],
# label="Weights type",
# multiselect=False,
# value="Original",
# interactive=True,
# )
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
# submit_button = gr.Button("Submit Eval")
# submission_result = gr.Markdown()
# submit_button.click(
# add_new_eval,
# [
# model_name_textbox,
# base_model_name_textbox,
# revision_name_textbox,
# precision,
# weight_type,
# model_type,
# ],
# submission_result,
# )
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=30)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()