Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,18 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
import pandas as pd
|
4 |
import re
|
5 |
|
6 |
-
# Load the
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Load SOP Dataset
|
10 |
@st.cache_data
|
@@ -13,7 +21,6 @@ def load_sop_dataset():
|
|
13 |
dataset = pd.read_csv("dataset.csv") # Ensure this file is uploaded to your Hugging Face Space
|
14 |
return dataset
|
15 |
|
16 |
-
# Load the dataset
|
17 |
dataset = load_sop_dataset()
|
18 |
|
19 |
# Utility function to find the most relevant context
|
@@ -32,7 +39,7 @@ def find_best_context(question, dataset):
|
|
32 |
return best_context
|
33 |
|
34 |
# Streamlit UI
|
35 |
-
st.title("SOP Question Answering AI")
|
36 |
st.markdown("Ask any question about Standard Operating Procedures:")
|
37 |
|
38 |
# User input
|
@@ -47,10 +54,10 @@ if st.button("Get Answer"):
|
|
47 |
|
48 |
if context:
|
49 |
with st.spinner("Answering your question..."):
|
50 |
-
|
|
|
51 |
st.success("Answer:")
|
52 |
-
st.write(result["
|
53 |
-
st.write("Confidence Score:", result["score"])
|
54 |
else:
|
55 |
st.warning("No relevant context found. Please try rephrasing your question.")
|
56 |
else:
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
import pandas as pd
|
4 |
import re
|
5 |
|
6 |
+
# Load the LLaMA model and tokenizer
|
7 |
+
@st.cache_resource
|
8 |
+
def load_llama_model():
|
9 |
+
"""Load the LLaMA model and tokenizer."""
|
10 |
+
model_name = "meta-llama/Llama-2-7b-chat-hf" # Replace with your preferred LLaMA model
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
+
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
14 |
+
|
15 |
+
qa_pipeline = load_llama_model()
|
16 |
|
17 |
# Load SOP Dataset
|
18 |
@st.cache_data
|
|
|
21 |
dataset = pd.read_csv("dataset.csv") # Ensure this file is uploaded to your Hugging Face Space
|
22 |
return dataset
|
23 |
|
|
|
24 |
dataset = load_sop_dataset()
|
25 |
|
26 |
# Utility function to find the most relevant context
|
|
|
39 |
return best_context
|
40 |
|
41 |
# Streamlit UI
|
42 |
+
st.title("SOP Question Answering AI with LLaMA")
|
43 |
st.markdown("Ask any question about Standard Operating Procedures:")
|
44 |
|
45 |
# User input
|
|
|
54 |
|
55 |
if context:
|
56 |
with st.spinner("Answering your question..."):
|
57 |
+
prompt = f"Context: {context}\n\nQuestion: {question}\nAnswer:"
|
58 |
+
result = qa_pipeline(prompt, max_length=150, num_return_sequences=1)
|
59 |
st.success("Answer:")
|
60 |
+
st.write(result[0]["generated_text"])
|
|
|
61 |
else:
|
62 |
st.warning("No relevant context found. Please try rephrasing your question.")
|
63 |
else:
|