Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,091 Bytes
2eb1692 f02359f 779815d f02359f 779815d f02359f 779815d f02359f 6720dc6 f02359f 6720dc6 f02359f 6720dc6 f02359f 21f5a60 779815d f02359f e10b1e0 f02359f 6720dc6 f02359f 6720dc6 f02359f 21f5a60 054dd0f f0953a9 f02359f 779815d f02359f 779815d f02359f 779815d f02359f 779815d f02359f 779815d f02359f 74716dc f02359f 74716dc 8ad8931 f02359f 74716dc f02359f 74716dc 8ad8931 74716dc f02359f 91f8d5b f02359f 21f5a60 054dd0f f02359f 21f5a60 f02359f 21b1c74 f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa 21f5a60 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 779815d f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 8740caa f02359f 6afac02 8ad8931 8740caa 6afac02 8740caa 6afac02 94ed691 b15c709 8740caa f02359f 779815d f02359f 8740caa 779815d f02359f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
import os
import sys# Add the current directory to path if needed
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
# Apply the patch
import gradio_client.utils as client_utils
from patch_utils import json_schema_to_python_type, _json_schema_to_python_type, get_type, get_desc
# Override the functions with your patched versions
client_utils.json_schema_to_python_type = json_schema_to_python_type
client_utils._json_schema_to_python_type = _json_schema_to_python_type
client_utils.get_type = get_type
# Add the missing get_desc function
if not hasattr(client_utils, 'get_desc'):
client_utils.get_desc = get_desc
from email.policy import default
from json import encoder
import gradio as gr
import spaces
import numpy as np
import torch
import requests
import random
import pickle
from PIL import Image
from tqdm.auto import tqdm
from datetime import datetime
from gradio_utils import is_torch2_available
if is_torch2_available():
from gradio_utils import \
AttnProcessor2_0 as AttnProcessor
# from gradio_utils import SpatialAttnProcessor2_0
else:
from gradio_utils import AttnProcessor
import diffusers
from diffusers import StableDiffusionXLPipeline
from pipeline import PhotoMakerStableDiffusionXLPipeline
from diffusers import DDIMScheduler
import torch.nn.functional as F
from gradio_utils import cal_attn_mask_xl
import copy
import os
from huggingface_hub import hf_hub_download
from diffusers.utils import load_image
from utils import get_comic
from style_template import styles
image_encoder_path = "./data/models/ip_adapter/sdxl_models/image_encoder"
ip_ckpt = "./data/models/ip_adapter/sdxl_models/ip-adapter_sdxl_vit-h.bin"
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Japanese Anime"
global models_dict
use_va = True
models_dict = {
# "Juggernaut": "RunDiffusion/Juggernaut-XL-v8",
# "RealVision": "SG161222/RealVisXL_V4.0" ,
"SDXL":"stabilityai/stable-diffusion-xl-base-1.0" ,
# "Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y"
}
photomaker_path = hf_hub_download(repo_id="TencentARC/PhotoMaker", filename="photomaker-v1.bin", repo_type="model")
MAX_SEED = np.iinfo(np.int32).max
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def set_text_unfinished():
return gr.update(visible=True, value="<h3>(Not Finished) Generating 路路路 The intermediate results will be shown.</h3>")
def set_text_finished():
return gr.update(visible=True, value="<h3>Generation Finished</h3>")
#################################################
class SpatialAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
text_context_len (`int`, defaults to 77):
The context length of the text features.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(self, hidden_size = None, cross_attention_dim=None,id_length = 4,device = "cuda",dtype = torch.float16):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.device = device
self.dtype = dtype
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.total_length = id_length + 1
self.id_length = id_length
self.id_bank = {}
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None):
# un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2)
# un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb)
global total_count,attn_count,cur_step,mask1024,mask4096
global sa32, sa64
global write
global height,width
global num_steps
if write:
# print(f"white:{cur_step}")
self.id_bank[cur_step] = [hidden_states[:self.id_length], hidden_states[self.id_length:]]
else:
encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(self.device),hidden_states[:1],self.id_bank[cur_step][1].to(self.device),hidden_states[1:]))
if cur_step <=1:
hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb)
else: # 256 1024 4096
random_number = random.random()
if cur_step <0.4 * num_steps:
rand_num = 0.3
else:
rand_num = 0.1
# print(f"hidden state shape {hidden_states.shape[1]}")
if random_number > rand_num:
# print("mask shape",mask1024.shape,mask4096.shape)
if not write:
if hidden_states.shape[1] == (height//32) * (width//32):
attention_mask = mask1024[mask1024.shape[0] // self.total_length * self.id_length:]
else:
attention_mask = mask4096[mask4096.shape[0] // self.total_length * self.id_length:]
else:
# print(self.total_length,self.id_length,hidden_states.shape,(height//32) * (width//32))
if hidden_states.shape[1] == (height//32) * (width//32):
attention_mask = mask1024[:mask1024.shape[0] // self.total_length * self.id_length,:mask1024.shape[0] // self.total_length * self.id_length]
else:
attention_mask = mask4096[:mask4096.shape[0] // self.total_length * self.id_length,:mask4096.shape[0] // self.total_length * self.id_length]
# print(attention_mask.shape)
# print("before attention",hidden_states.shape,attention_mask.shape,encoder_hidden_states.shape if encoder_hidden_states is not None else "None")
hidden_states = self.__call1__(attn, hidden_states,encoder_hidden_states,attention_mask,temb)
else:
hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb)
attn_count +=1
if attn_count == total_count:
attn_count = 0
cur_step += 1
mask1024,mask4096 = cal_attn_mask_xl(self.total_length,self.id_length,sa32,sa64,height,width, device=self.device, dtype= self.dtype)
return hidden_states
def __call1__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
# print("hidden state shape",hidden_states.shape,self.id_length)
residual = hidden_states
# if encoder_hidden_states is not None:
# raise Exception("not implement")
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
total_batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(total_batch_size, channel, height * width).transpose(1, 2)
total_batch_size,nums_token,channel = hidden_states.shape
img_nums = total_batch_size//2
hidden_states = hidden_states.view(-1,img_nums,nums_token,channel).reshape(-1,img_nums * nums_token,channel)
batch_size, sequence_length, _ = hidden_states.shape
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states # B, N, C
else:
encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,nums_token,channel).reshape(-1,(self.id_length+1) * nums_token,channel)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# print(key.shape,value.shape,query.shape,attention_mask.shape)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
#print(query.shape,key.shape,value.shape,attention_mask.shape)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(total_batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
# if input_ndim == 4:
# tile_hidden_states = tile_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
# if attn.residual_connection:
# tile_hidden_states = tile_hidden_states + residual
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(total_batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
# print(hidden_states.shape)
return hidden_states
def __call2__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, channel = (
hidden_states.shape
)
# print(hidden_states.shape)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states # B, N, C
else:
encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,sequence_length,channel).reshape(-1,(self.id_length+1) * sequence_length,channel)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def set_attention_processor(unet,id_length,is_ipadapter = False):
global total_count
total_count = 0
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
if name.startswith("up_blocks") :
attn_procs[name] = SpatialAttnProcessor2_0(id_length = id_length)
total_count +=1
else:
attn_procs[name] = AttnProcessor()
else:
if is_ipadapter:
attn_procs[name] = IPAttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1,
num_tokens=4,
).to(unet.device, dtype=torch.float16)
else:
attn_procs[name] = AttnProcessor()
unet.set_attn_processor(copy.deepcopy(attn_procs))
print("successsfully load paired self-attention")
print(f"number of the processor : {total_count}")
#################################################
#################################################
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
load_js = """
async () => {
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
fetch(url)
.then(res => res.text())
.then(text => {
const script = document.createElement('script');
script.type = "module"
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
document.head.appendChild(script);
});
}
"""
get_js_colors = """
async (canvasData) => {
const canvasEl = document.getElementById("canvas-root");
return [canvasEl._data]
}
"""
css = '''
#color-bg{display:flex;justify-content: center;align-items: center;}
.color-bg-item{width: 100%; height: 32px}
#main_button{width:100%}
<style>
'''
#################################################
title = r"""
<h1 align="center">Ai Comic Generator</h1>
"""
description = r"""
<br>鉂楋笍鉂楋笍鉂楋笍[<b>Important</b>] Personalization steps:<br>
1: Enter the prompt array, each line corrsponds to one generated image.<br>
2: Choose your preferred style template.<br>
3: Click the <b>Submit</b> button to start customizing.
"""
article = r"""
<br>If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
"""
version = r"""
<h3 align="center">Ai Comic Generator</h3>
<h5 >1. Support Typesetting Style and Captioning.(By default, the prompt is used as the caption for each image. If you need to change the caption, add a # at the end of each line. Only the part after the # will be added as a caption to the image.)</h5>
<h5 >2. [NC]symbol (The [NC] symbol is used as a flag to indicate that no characters should be present in the generated scene images. If you want do that, prepend the "[NC]" at the beginning of the line. For example, to generate a scene of falling leaves without any character, write: "[NC] The leaves are falling."),Currently, support is only using Textual Description</h5>
<h5>Tips: Not Ready Now! Just Test! It's better to use prompts to assist in controlling the character's attire. Depending on the limited code integration time, there might be some undiscovered bugs. If you find that a particular generation result is significantly poor, please email me ([email protected]) Thank you very much.</h4>
"""
#################################################
global attn_count, total_count, id_length, total_length,cur_step, cur_model_type
global write
global sa32, sa64
global height,width
attn_count = 0
total_count = 0
cur_step = 0
id_length = 4
total_length = 5
cur_model_type = ""
device="cuda"
global attn_procs,unet
attn_procs = {}
###
write = False
###
sa32 = 0.5
sa64 = 0.5
height = 768
width = 768
###
global sd_model_path
sd_model_path = models_dict["SDXL"]#"SG161222/RealVisXL_V4.0"
use_safetensors= False
### LOAD Stable Diffusion Pipeline
# pipe1 = StableDiffusionXLPipeline.from_pretrained(sd_model_path, torch_dtype=torch.float16, use_safetensors= use_safetensors)
# pipe1 = pipe1.to("cpu")
# pipe1.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
# # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
# pipe1.scheduler.set_timesteps(50)
###
''''pipe2 = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
models_dict["Juggernaut"], torch_dtype=torch.float16, use_safetensors=use_safetensors)
pipe2 = pipe2.to("cpu")
pipe2.load_photomaker_adapter(
os.path.dirname(photomaker_path),
subfolder="",
weight_name=os.path.basename(photomaker_path),
trigger_word="img" # define the trigger word
)
pipe2 = pipe2.to("cpu")
pipe2.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
pipe2.fuse_lora()'''
pipe4 = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
models_dict["SDXL"], torch_dtype=torch.float32, use_safetensors=True)
pipe4 = pipe4.to("cpu")
pipe4.load_photomaker_adapter(
os.path.dirname(photomaker_path),
subfolder="",
weight_name=os.path.basename(photomaker_path),
trigger_word="img" # define the trigger word
)
pipe4 = pipe4.to("cpu")
pipe4.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
pipe4.fuse_lora()
# pipe3 = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0", torch_dtype=torch.float16)
# pipe3 = pipe3.to("cpu")
# pipe3.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
# # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
# pipe3.scheduler.set_timesteps(50)
######### Gradio Fuction #############
def remove_tips():
return gr.update(visible=False)
def apply_style_positive(style_name: str, positive: str):
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive)
def apply_style(style_name: str, positives: list, negative: str = ""):
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return [p.replace("{prompt}", positive) for positive in positives], n + ' ' + negative
def change_visible_by_model_type(_model_type):
# Since you are **only using text**, always hide ref image uploads
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
######### Image Generation ##############
@spaces.GPU(duration=120)
def process_generation(_sd_type, _num_steps, style_name, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array, G_height, G_width, _comic_type):
global sa32, sa64, id_length, total_length, attn_procs, unet, cur_model_type, device
global num_steps
global write
global cur_step, attn_count
global height, width
height = G_height
width = G_width
global pipe2, pipe4
global sd_model_path, models_dict
sd_model_path = models_dict[_sd_type]
num_steps = _num_steps
use_safe_tensor = True
if style_name == "(No style)":
sd_model_path = models_dict["SDXL"]
pipe = StableDiffusionXLPipeline.from_pretrained(sd_model_path, torch_dtype=torch.float16)
pipe = pipe.to(device)
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
set_attention_processor(pipe.unet, id_length_, is_ipadapter=False)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
cur_model_type = _sd_type + "-original-" + str(id_length_)
prompts = prompt_array.splitlines()
if len(prompts) > 10:
raise gr.Error(f"No more than 10 prompts in the Hugging Face demo for speed! But found {len(prompts)} prompts!")
generator = torch.Generator(device="cuda").manual_seed(seed_)
sa32, sa64 = sa32_, sa64_
id_length = id_length_
clipped_prompts = prompts[:]
prompts = [general_prompt + "," + prompt if "[NC]" not in prompt else prompt.replace("[NC]", "") for prompt in clipped_prompts]
prompts = [prompt.rpartition('#')[0] if "#" in prompt else prompt for prompt in prompts]
id_prompts = prompts[:id_length]
real_prompts = prompts[id_length:]
torch.cuda.empty_cache()
write = True
cur_step = 0
attn_count = 0
id_prompts, negative_prompt = apply_style(style_name, id_prompts, negative_prompt)
setup_seed(seed_)
total_results = []
# Generate ID images
id_images = pipe(id_prompts, num_inference_steps=num_steps, guidance_scale=guidance_scale,
height=height, width=width, negative_prompt=negative_prompt, generator=generator).images
total_results = id_images + total_results
yield total_results
# Generate real comic images
real_images = []
write = False
for real_prompt in real_prompts:
setup_seed(seed_)
cur_step = 0
real_prompt = apply_style_positive(style_name, real_prompt)
real_images.append(pipe(real_prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale,
height=height, width=width, negative_prompt=negative_prompt, generator=generator).images[0])
total_results = [real_images[-1]] + total_results
yield total_results
# Comic typesetting if selected
if _comic_type != "No typesetting (default)":
captions = prompt_array.splitlines()
captions = [caption.replace("[NC]", "") for caption in captions]
captions = [caption.split('#')[-1] if "#" in caption else caption for caption in captions]
from PIL import ImageFont
total_results = get_comic(id_images + real_images, _comic_type, captions=captions,
font=ImageFont.truetype("./Inkfree.ttf", int(45))) + total_results
yield total_results
def array2string(arr):
return "\n".join(arr)
#################################################
#################################################
### define the interface
with gr.Blocks(css=css) as demo:
binary_matrixes = gr.State([])
color_layout = gr.State([])
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Group(elem_id="main-image"):
with gr.Column(visible=True):
sd_type = gr.Dropdown(choices=list(models_dict.keys()), value="SDXL", label="sd_type", info="Select pretrained model")
general_prompt = gr.Textbox(value='', label="(1) Textual Description for Character", interactive=True)
negative_prompt = gr.Textbox(value='', label="(2) Negative Prompt", interactive=True)
style = gr.Dropdown(label="Style Template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
prompt_array = gr.Textbox(lines=3, value='', label="(3) Comic Description (each line = one frame)", interactive=True)
with gr.Accordion("(4) Tune the Hyperparameters", open=True):
sa32_ = gr.Slider(label="Paired Attention at 32x32 layers", minimum=0, maximum=1., value=0.7, step=0.1)
sa64_ = gr.Slider(label="Paired Attention at 64x64 layers", minimum=0, maximum=1., value=0.7, step=0.1)
id_length_ = gr.Slider(label="Number of id images", minimum=2, maximum=4, value=3, step=1)
seed_ = gr.Slider(label="Seed", minimum=-1, maximum=MAX_SEED, value=0, step=1)
num_steps = gr.Slider(label="Number of Sample Steps", minimum=25, maximum=50, step=1, value=50)
G_height = gr.Slider(label="Height", minimum=256, maximum=1024, step=32, value=1024)
G_width = gr.Slider(label="Width", minimum=256, maximum=1024, step=32, value=1024)
comic_type = gr.Radio(["No Typesetting (default)", "Four Panel", "Classic Comic Style"], value="Classic Comic Style", label="Typesetting Style")
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=10.0, step=0.1, value=5)
final_run_btn = gr.Button("Generate ! 馃樅")
with gr.Column():
out_image = gr.Gallery(label="Result", columns=2, height='auto')
generated_information = gr.Markdown(label="Generation Details", value="", visible=False)
gr.Markdown(version)
final_run_btn.click(fn=set_text_unfinished, outputs=generated_information
).then(
process_generation,
inputs=[sd_type, num_steps, style, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array, G_height, G_width, comic_type],
outputs=out_image
).then(fn=set_text_finished, outputs=generated_information)
gr.Examples(
examples=[
[0, 0.5, 0.5, 2, "a young girl with short hair, wearing a jacket and boots",
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
array2string([
"exploring an abandoned library at night #This place is full of secrets.",
"discovers a hidden stairway beneath a broken bookshelf #Where does this go?",
"descends the stairs into a glowing underground room #Is this... magic?",
"touches a floating book, causing symbols to light up around her #Something is awakening!"
]),
"Japanese Anime", 768, 768],
[0, 0.7, 0.7, 2, "a man, wearing black suit",
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
array2string([
"at home, read new paper #at home, The newspaper says there is a treasure house in the forest.",
"on the road, near the forest",
"[NC] The car on the road, near the forest #He drives to the forest in search of treasure.",
"[NC]A tiger appeared in the forest, at night",
"very frightened, in the forest, at night",
"running very fast, in the forest, at night",
"[NC] A house in the forest, at night #Suddenly, he discovers the treasure house!",
"in the house filled with treasure, laughing, at night #He is overjoyed inside the house."
]),
"Japanese Anime", 768, 768],
[0, 0.6, 0.4, 3, "a cyberpunk hacker, glowing wires, neon glasses",
"bad anatomy, blurred face, extra limbs, poorly drawn, bad proportions, cartoon, fake",
array2string([
"[NC]In a dark room filled with monitors #She types rapidly on a neon-lit keyboard",
"neon city street at night, people walking by",
"a robot chases her through a back alley",
"[NC]She jumps onto a rooftop, escaping"
]),
"Comic book", 768, 768],
[1, 0.7, 0.3, 3, "an astronaut in white spacesuit",
"bad anatomy, floating limbs, poorly drawn face, disconnected limbs, cartoon",
array2string([
"floating in space above Earth",
"[NC]Spots a mysterious alien ship in the distance",
"enters the ship cautiously",
"[NC]finds a message written in glowing symbols"
]),
"Digital/Oil Painting", 768, 768],
],
inputs=[seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array, style, G_height, G_width],
label='馃樅 Examples 馃樅',
)
gr.Markdown(article)
demo.launch() |