Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys# Add the current directory to path if needed | |
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) | |
# Apply the patch | |
import gradio_client.utils as client_utils | |
from patch_utils import json_schema_to_python_type, _json_schema_to_python_type, get_type, get_desc | |
# Override the functions with your patched versions | |
client_utils.json_schema_to_python_type = json_schema_to_python_type | |
client_utils._json_schema_to_python_type = _json_schema_to_python_type | |
client_utils.get_type = get_type | |
# Add the missing get_desc function | |
if not hasattr(client_utils, 'get_desc'): | |
client_utils.get_desc = get_desc | |
from email.policy import default | |
from json import encoder | |
import gradio as gr | |
import spaces | |
import numpy as np | |
import torch | |
import requests | |
import random | |
import pickle | |
from PIL import Image | |
from tqdm.auto import tqdm | |
from datetime import datetime | |
from gradio_utils import is_torch2_available | |
if is_torch2_available(): | |
from gradio_utils import \ | |
AttnProcessor2_0 as AttnProcessor | |
# from gradio_utils import SpatialAttnProcessor2_0 | |
else: | |
from gradio_utils import AttnProcessor | |
import diffusers | |
from diffusers import StableDiffusionXLPipeline | |
from pipeline import PhotoMakerStableDiffusionXLPipeline | |
from diffusers import DDIMScheduler | |
import torch.nn.functional as F | |
from gradio_utils import cal_attn_mask_xl | |
import copy | |
import os | |
from huggingface_hub import hf_hub_download | |
from diffusers.utils import load_image | |
from utils import get_comic | |
from style_template import styles | |
image_encoder_path = "./data/models/ip_adapter/sdxl_models/image_encoder" | |
ip_ckpt = "./data/models/ip_adapter/sdxl_models/ip-adapter_sdxl_vit-h.bin" | |
os.environ["no_proxy"] = "localhost,127.0.0.1,::1" | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "Japanese Anime" | |
global models_dict | |
use_va = True | |
models_dict = { | |
# "Juggernaut": "RunDiffusion/Juggernaut-XL-v8", | |
# "RealVision": "SG161222/RealVisXL_V4.0" , | |
"SDXL":"stabilityai/stable-diffusion-xl-base-1.0" , | |
# "Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y" | |
} | |
photomaker_path = hf_hub_download(repo_id="TencentARC/PhotoMaker", filename="photomaker-v1.bin", repo_type="model") | |
MAX_SEED = np.iinfo(np.int32).max | |
def setup_seed(seed): | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
np.random.seed(seed) | |
random.seed(seed) | |
torch.backends.cudnn.deterministic = True | |
def set_text_unfinished(): | |
return gr.update(visible=True, value="<h3>(Not Finished) Generating ··· The intermediate results will be shown.</h3>") | |
def set_text_finished(): | |
return gr.update(visible=True, value="<h3>Generation Finished</h3>") | |
################################################# | |
class SpatialAttnProcessor2_0(torch.nn.Module): | |
r""" | |
Attention processor for IP-Adapater for PyTorch 2.0. | |
Args: | |
hidden_size (`int`): | |
The hidden size of the attention layer. | |
cross_attention_dim (`int`): | |
The number of channels in the `encoder_hidden_states`. | |
text_context_len (`int`, defaults to 77): | |
The context length of the text features. | |
scale (`float`, defaults to 1.0): | |
the weight scale of image prompt. | |
""" | |
def __init__(self, hidden_size = None, cross_attention_dim=None,id_length = 4,device = "cuda",dtype = torch.float16): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.device = device | |
self.dtype = dtype | |
self.hidden_size = hidden_size | |
self.cross_attention_dim = cross_attention_dim | |
self.total_length = id_length + 1 | |
self.id_length = id_length | |
self.id_bank = {} | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None): | |
# un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2) | |
# un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb) | |
global total_count,attn_count,cur_step,mask1024,mask4096 | |
global sa32, sa64 | |
global write | |
global height,width | |
global num_steps | |
if write: | |
# print(f"white:{cur_step}") | |
self.id_bank[cur_step] = [hidden_states[:self.id_length], hidden_states[self.id_length:]] | |
else: | |
encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(self.device),hidden_states[:1],self.id_bank[cur_step][1].to(self.device),hidden_states[1:])) | |
if cur_step <=1: | |
hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb) | |
else: # 256 1024 4096 | |
random_number = random.random() | |
if cur_step <0.4 * num_steps: | |
rand_num = 0.3 | |
else: | |
rand_num = 0.1 | |
# print(f"hidden state shape {hidden_states.shape[1]}") | |
if random_number > rand_num: | |
# print("mask shape",mask1024.shape,mask4096.shape) | |
if not write: | |
if hidden_states.shape[1] == (height//32) * (width//32): | |
attention_mask = mask1024[mask1024.shape[0] // self.total_length * self.id_length:] | |
else: | |
attention_mask = mask4096[mask4096.shape[0] // self.total_length * self.id_length:] | |
else: | |
# print(self.total_length,self.id_length,hidden_states.shape,(height//32) * (width//32)) | |
if hidden_states.shape[1] == (height//32) * (width//32): | |
attention_mask = mask1024[:mask1024.shape[0] // self.total_length * self.id_length,:mask1024.shape[0] // self.total_length * self.id_length] | |
else: | |
attention_mask = mask4096[:mask4096.shape[0] // self.total_length * self.id_length,:mask4096.shape[0] // self.total_length * self.id_length] | |
# print(attention_mask.shape) | |
# print("before attention",hidden_states.shape,attention_mask.shape,encoder_hidden_states.shape if encoder_hidden_states is not None else "None") | |
hidden_states = self.__call1__(attn, hidden_states,encoder_hidden_states,attention_mask,temb) | |
else: | |
hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb) | |
attn_count +=1 | |
if attn_count == total_count: | |
attn_count = 0 | |
cur_step += 1 | |
mask1024,mask4096 = cal_attn_mask_xl(self.total_length,self.id_length,sa32,sa64,height,width, device=self.device, dtype= self.dtype) | |
return hidden_states | |
def __call1__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
# print("hidden state shape",hidden_states.shape,self.id_length) | |
residual = hidden_states | |
# if encoder_hidden_states is not None: | |
# raise Exception("not implement") | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
total_batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(total_batch_size, channel, height * width).transpose(1, 2) | |
total_batch_size,nums_token,channel = hidden_states.shape | |
img_nums = total_batch_size//2 | |
hidden_states = hidden_states.view(-1,img_nums,nums_token,channel).reshape(-1,img_nums * nums_token,channel) | |
batch_size, sequence_length, _ = hidden_states.shape | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states # B, N, C | |
else: | |
encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,nums_token,channel).reshape(-1,(self.id_length+1) * nums_token,channel) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# print(key.shape,value.shape,query.shape,attention_mask.shape) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
#print(query.shape,key.shape,value.shape,attention_mask.shape) | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(total_batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
# if input_ndim == 4: | |
# tile_hidden_states = tile_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
# if attn.residual_connection: | |
# tile_hidden_states = tile_hidden_states + residual | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(total_batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
# print(hidden_states.shape) | |
return hidden_states | |
def __call2__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, channel = ( | |
hidden_states.shape | |
) | |
# print(hidden_states.shape) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states # B, N, C | |
else: | |
encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,sequence_length,channel).reshape(-1,(self.id_length+1) * sequence_length,channel) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
def set_attention_processor(unet,id_length,is_ipadapter = False): | |
global total_count | |
total_count = 0 | |
attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
if cross_attention_dim is None: | |
if name.startswith("up_blocks") : | |
attn_procs[name] = SpatialAttnProcessor2_0(id_length = id_length) | |
total_count +=1 | |
else: | |
attn_procs[name] = AttnProcessor() | |
else: | |
if is_ipadapter: | |
attn_procs[name] = IPAttnProcessor2_0( | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
scale=1, | |
num_tokens=4, | |
).to(unet.device, dtype=torch.float16) | |
else: | |
attn_procs[name] = AttnProcessor() | |
unet.set_attn_processor(copy.deepcopy(attn_procs)) | |
print("successsfully load paired self-attention") | |
print(f"number of the processor : {total_count}") | |
################################################# | |
################################################# | |
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>" | |
load_js = """ | |
async () => { | |
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js" | |
fetch(url) | |
.then(res => res.text()) | |
.then(text => { | |
const script = document.createElement('script'); | |
script.type = "module" | |
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' })); | |
document.head.appendChild(script); | |
}); | |
} | |
""" | |
get_js_colors = """ | |
async (canvasData) => { | |
const canvasEl = document.getElementById("canvas-root"); | |
return [canvasEl._data] | |
} | |
""" | |
css = ''' | |
#color-bg{display:flex;justify-content: center;align-items: center;} | |
.color-bg-item{width: 100%; height: 32px} | |
#main_button{width:100%} | |
<style> | |
''' | |
################################################# | |
title = r""" | |
<h1 align="center">Ai Comic Generator</h1> | |
""" | |
description = r""" | |
<br>❗️❗️❗️[<b>Important</b>] Personalization steps:<br> | |
1: Enter the prompt array, each line corrsponds to one generated image.<br> | |
2: Choose your preferred style template.<br> | |
3: Click the <b>Submit</b> button to start customizing. | |
""" | |
article = r""" | |
<br>If you have any questions, please feel free to reach me out at <b>[email protected]</b>. | |
""" | |
version = r""" | |
<h3 align="center">Ai Comic Generator</h3> | |
<h5 >1. Support Typesetting Style and Captioning.(By default, the prompt is used as the caption for each image. If you need to change the caption, add a # at the end of each line. Only the part after the # will be added as a caption to the image.)</h5> | |
<h5 >2. [NC]symbol (The [NC] symbol is used as a flag to indicate that no characters should be present in the generated scene images. If you want do that, prepend the "[NC]" at the beginning of the line. For example, to generate a scene of falling leaves without any character, write: "[NC] The leaves are falling."),Currently, support is only using Textual Description</h5> | |
<h5>Tips: Not Ready Now! Just Test! It's better to use prompts to assist in controlling the character's attire. Depending on the limited code integration time, there might be some undiscovered bugs. If you find that a particular generation result is significantly poor, please email me ([email protected]) Thank you very much.</h4> | |
""" | |
################################################# | |
global attn_count, total_count, id_length, total_length,cur_step, cur_model_type | |
global write | |
global sa32, sa64 | |
global height,width | |
attn_count = 0 | |
total_count = 0 | |
cur_step = 0 | |
id_length = 4 | |
total_length = 5 | |
cur_model_type = "" | |
device="cuda" | |
global attn_procs,unet | |
attn_procs = {} | |
### | |
write = False | |
### | |
sa32 = 0.5 | |
sa64 = 0.5 | |
height = 768 | |
width = 768 | |
### | |
global sd_model_path | |
sd_model_path = models_dict["SDXL"]#"SG161222/RealVisXL_V4.0" | |
use_safetensors= False | |
### LOAD Stable Diffusion Pipeline | |
# pipe1 = StableDiffusionXLPipeline.from_pretrained(sd_model_path, torch_dtype=torch.float16, use_safetensors= use_safetensors) | |
# pipe1 = pipe1.to("cpu") | |
# pipe1.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2) | |
# # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
# pipe1.scheduler.set_timesteps(50) | |
### | |
''''pipe2 = PhotoMakerStableDiffusionXLPipeline.from_pretrained( | |
models_dict["Juggernaut"], torch_dtype=torch.float16, use_safetensors=use_safetensors) | |
pipe2 = pipe2.to("cpu") | |
pipe2.load_photomaker_adapter( | |
os.path.dirname(photomaker_path), | |
subfolder="", | |
weight_name=os.path.basename(photomaker_path), | |
trigger_word="img" # define the trigger word | |
) | |
pipe2 = pipe2.to("cpu") | |
pipe2.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2) | |
pipe2.fuse_lora()''' | |
pipe4 = PhotoMakerStableDiffusionXLPipeline.from_pretrained( | |
models_dict["SDXL"], torch_dtype=torch.float32, use_safetensors=True) | |
pipe4 = pipe4.to("cpu") | |
pipe4.load_photomaker_adapter( | |
os.path.dirname(photomaker_path), | |
subfolder="", | |
weight_name=os.path.basename(photomaker_path), | |
trigger_word="img" # define the trigger word | |
) | |
pipe4 = pipe4.to("cpu") | |
pipe4.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2) | |
pipe4.fuse_lora() | |
# pipe3 = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0", torch_dtype=torch.float16) | |
# pipe3 = pipe3.to("cpu") | |
# pipe3.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2) | |
# # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
# pipe3.scheduler.set_timesteps(50) | |
######### Gradio Fuction ############# | |
def remove_tips(): | |
return gr.update(visible=False) | |
def apply_style_positive(style_name: str, positive: str): | |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
return p.replace("{prompt}", positive) | |
def apply_style(style_name: str, positives: list, negative: str = ""): | |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
return [p.replace("{prompt}", positive) for positive in positives], n + ' ' + negative | |
def change_visible_by_model_type(_model_type): | |
# Since you are **only using text**, always hide ref image uploads | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
######### Image Generation ############## | |
def process_generation(_sd_type, _num_steps, style_name, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array, G_height, G_width, _comic_type): | |
global sa32, sa64, id_length, total_length, attn_procs, unet, cur_model_type, device | |
global num_steps | |
global write | |
global cur_step, attn_count | |
global height, width | |
height = G_height | |
width = G_width | |
global pipe2, pipe4 | |
global sd_model_path, models_dict | |
sd_model_path = models_dict[_sd_type] | |
num_steps = _num_steps | |
use_safe_tensor = True | |
if style_name == "(No style)": | |
sd_model_path = models_dict["SDXL"] | |
pipe = StableDiffusionXLPipeline.from_pretrained(sd_model_path, torch_dtype=torch.float16) | |
pipe = pipe.to(device) | |
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2) | |
set_attention_processor(pipe.unet, id_length_, is_ipadapter=False) | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
cur_model_type = _sd_type + "-original-" + str(id_length_) | |
prompts = prompt_array.splitlines() | |
if len(prompts) > 10: | |
raise gr.Error(f"No more than 10 prompts in the Hugging Face demo for speed! But found {len(prompts)} prompts!") | |
generator = torch.Generator(device="cuda").manual_seed(seed_) | |
sa32, sa64 = sa32_, sa64_ | |
id_length = id_length_ | |
clipped_prompts = prompts[:] | |
prompts = [general_prompt + "," + prompt if "[NC]" not in prompt else prompt.replace("[NC]", "") for prompt in clipped_prompts] | |
prompts = [prompt.rpartition('#')[0] if "#" in prompt else prompt for prompt in prompts] | |
id_prompts = prompts[:id_length] | |
real_prompts = prompts[id_length:] | |
torch.cuda.empty_cache() | |
write = True | |
cur_step = 0 | |
attn_count = 0 | |
id_prompts, negative_prompt = apply_style(style_name, id_prompts, negative_prompt) | |
setup_seed(seed_) | |
total_results = [] | |
# Generate ID images | |
id_images = pipe(id_prompts, num_inference_steps=num_steps, guidance_scale=guidance_scale, | |
height=height, width=width, negative_prompt=negative_prompt, generator=generator).images | |
total_results = id_images + total_results | |
yield total_results | |
# Generate real comic images | |
real_images = [] | |
write = False | |
for real_prompt in real_prompts: | |
setup_seed(seed_) | |
cur_step = 0 | |
real_prompt = apply_style_positive(style_name, real_prompt) | |
real_images.append(pipe(real_prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale, | |
height=height, width=width, negative_prompt=negative_prompt, generator=generator).images[0]) | |
total_results = [real_images[-1]] + total_results | |
yield total_results | |
# Comic typesetting if selected | |
if _comic_type != "No typesetting (default)": | |
captions = prompt_array.splitlines() | |
captions = [caption.replace("[NC]", "") for caption in captions] | |
captions = [caption.split('#')[-1] if "#" in caption else caption for caption in captions] | |
from PIL import ImageFont | |
total_results = get_comic(id_images + real_images, _comic_type, captions=captions, | |
font=ImageFont.truetype("./Inkfree.ttf", int(45))) + total_results | |
yield total_results | |
def array2string(arr): | |
return "\n".join(arr) | |
################################################# | |
################################################# | |
### define the interface | |
with gr.Blocks(css=css) as demo: | |
binary_matrixes = gr.State([]) | |
color_layout = gr.State([]) | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Group(elem_id="main-image"): | |
with gr.Column(visible=True): | |
sd_type = gr.Dropdown(choices=list(models_dict.keys()), value="SDXL", label="sd_type", info="Select pretrained model") | |
general_prompt = gr.Textbox(value='', label="(1) Textual Description for Character", interactive=True) | |
negative_prompt = gr.Textbox(value='', label="(2) Negative Prompt", interactive=True) | |
style = gr.Dropdown(label="Style Template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) | |
prompt_array = gr.Textbox(lines=3, value='', label="(3) Comic Description (each line = one frame)", interactive=True) | |
with gr.Accordion("(4) Tune the Hyperparameters", open=True): | |
sa32_ = gr.Slider(label="Paired Attention at 32x32 layers", minimum=0, maximum=1., value=0.7, step=0.1) | |
sa64_ = gr.Slider(label="Paired Attention at 64x64 layers", minimum=0, maximum=1., value=0.7, step=0.1) | |
id_length_ = gr.Slider(label="Number of id images", minimum=2, maximum=4, value=3, step=1) | |
seed_ = gr.Slider(label="Seed", minimum=-1, maximum=MAX_SEED, value=0, step=1) | |
num_steps = gr.Slider(label="Number of Sample Steps", minimum=25, maximum=50, step=1, value=50) | |
G_height = gr.Slider(label="Height", minimum=256, maximum=1024, step=32, value=1024) | |
G_width = gr.Slider(label="Width", minimum=256, maximum=1024, step=32, value=1024) | |
comic_type = gr.Radio(["No Typesetting (default)", "Four Panel", "Classic Comic Style"], value="Classic Comic Style", label="Typesetting Style") | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=10.0, step=0.1, value=5) | |
final_run_btn = gr.Button("Generate ! 😺") | |
with gr.Column(): | |
out_image = gr.Gallery(label="Result", columns=2, height='auto') | |
generated_information = gr.Markdown(label="Generation Details", value="", visible=False) | |
gr.Markdown(version) | |
final_run_btn.click(fn=set_text_unfinished, outputs=generated_information | |
).then( | |
process_generation, | |
inputs=[sd_type, num_steps, style, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array, G_height, G_width, comic_type], | |
outputs=out_image | |
).then(fn=set_text_finished, outputs=generated_information) | |
gr.Examples( | |
examples=[ | |
[0, 0.5, 0.5, 2, "a young girl with short hair, wearing a jacket and boots", | |
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs", | |
array2string([ | |
"exploring an abandoned library at night #This place is full of secrets.", | |
"discovers a hidden stairway beneath a broken bookshelf #Where does this go?", | |
"descends the stairs into a glowing underground room #Is this... magic?", | |
"touches a floating book, causing symbols to light up around her #Something is awakening!" | |
]), | |
"Japanese Anime", 768, 768], | |
[0, 0.7, 0.7, 2, "a man, wearing black suit", | |
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs", | |
array2string([ | |
"at home, read new paper #at home, The newspaper says there is a treasure house in the forest.", | |
"on the road, near the forest", | |
"[NC] The car on the road, near the forest #He drives to the forest in search of treasure.", | |
"[NC]A tiger appeared in the forest, at night", | |
"very frightened, in the forest, at night", | |
"running very fast, in the forest, at night", | |
"[NC] A house in the forest, at night #Suddenly, he discovers the treasure house!", | |
"in the house filled with treasure, laughing, at night #He is overjoyed inside the house." | |
]), | |
"Japanese Anime", 768, 768], | |
[0, 0.6, 0.4, 3, "a cyberpunk hacker, glowing wires, neon glasses", | |
"bad anatomy, blurred face, extra limbs, poorly drawn, bad proportions, cartoon, fake", | |
array2string([ | |
"[NC]In a dark room filled with monitors #She types rapidly on a neon-lit keyboard", | |
"neon city street at night, people walking by", | |
"a robot chases her through a back alley", | |
"[NC]She jumps onto a rooftop, escaping" | |
]), | |
"Comic book", 768, 768], | |
[1, 0.7, 0.3, 3, "an astronaut in white spacesuit", | |
"bad anatomy, floating limbs, poorly drawn face, disconnected limbs, cartoon", | |
array2string([ | |
"floating in space above Earth", | |
"[NC]Spots a mysterious alien ship in the distance", | |
"enters the ship cautiously", | |
"[NC]finds a message written in glowing symbols" | |
]), | |
"Digital/Oil Painting", 768, 768], | |
], | |
inputs=[seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array, style, G_height, G_width], | |
label='😺 Examples 😺', | |
) | |
gr.Markdown(article) | |
demo.launch() |