File size: 14,515 Bytes
d73173f
 
 
 
 
 
 
 
 
 
 
5c971ea
d73173f
5c971ea
 
 
 
 
 
 
d73173f
 
5c971ea
d73173f
5c971ea
 
d73173f
 
5c971ea
d73173f
5c971ea
 
 
 
 
 
 
 
 
d73173f
 
5c971ea
 
 
 
d73173f
 
 
5c971ea
 
 
 
d73173f
 
5c971ea
 
 
d73173f
 
5c971ea
d73173f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c971ea
d73173f
 
 
 
 
5c971ea
d73173f
 
 
5c971ea
d73173f
 
 
 
 
 
 
 
5c971ea
d73173f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c971ea
d73173f
 
 
 
5c971ea
 
 
d73173f
5c971ea
d73173f
 
 
5c971ea
 
 
 
 
 
d73173f
 
 
 
 
 
 
5c971ea
 
 
d73173f
5c971ea
 
d73173f
 
 
5c971ea
 
 
d73173f
5c971ea
d73173f
5c971ea
 
 
 
d73173f
5c971ea
 
 
d73173f
 
 
 
5c971ea
 
d73173f
5c971ea
d73173f
 
 
 
 
 
 
 
 
 
5c971ea
 
 
 
 
 
d73173f
 
 
 
 
 
 
 
 
5c971ea
 
d73173f
 
 
5c971ea
 
d73173f
 
5c971ea
 
 
d73173f
 
 
 
 
5c971ea
 
d73173f
5c971ea
 
 
 
 
d73173f
5c971ea
 
 
 
d73173f
5c971ea
d73173f
 
 
 
5c971ea
 
d73173f
 
 
 
 
5c971ea
 
d73173f
 
5c971ea
d73173f
 
5c971ea
d73173f
5c971ea
d73173f
 
 
5c971ea
 
 
 
 
 
d73173f
 
 
 
 
 
5c971ea
d73173f
 
 
 
 
 
 
 
 
 
 
 
5c971ea
d73173f
5c971ea
d73173f
5c971ea
d73173f
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os.path
import random
import torchvision.transforms as transforms
import torch
from data.base_dataset import BaseDataset
from data.image_folder import make_dataset
from PIL import Image
import numpy as np
import cv2
import csv


def getfeats(featpath):
    trans_points = np.empty([5, 2], dtype=np.int64)
    with open(featpath, 'r') as csvfile:
        reader = csv.reader(csvfile, delimiter=' ')
        for ind, row in enumerate(reader):
            trans_points[ind, :] = row
    return trans_points


def tocv2(ts):
    img = (ts.numpy() / 2 + 0.5) * 255
    img = img.astype('uint8')
    img = np.transpose(img, (1, 2, 0))
    img = img[:, :, ::-1]  # rgb->bgr
    return img


def dt(img):
    if (img.shape[2] == 3):
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # convert to BW
    ret1, thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
    ret2, thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
    dt1 = cv2.distanceTransform(thresh1, cv2.DIST_L2, 5)
    dt2 = cv2.distanceTransform(thresh2, cv2.DIST_L2, 5)
    dt1 = dt1 / dt1.max()  # ->[0,1]
    dt2 = dt2 / dt2.max()
    return dt1, dt2


def getSoft(size, xb, yb, boundwidth=5.0):
    xarray = np.tile(np.arange(0, size[1]), (size[0], 1))
    yarray = np.tile(np.arange(0, size[0]), (size[1], 1)).transpose()
    cxdists = []
    cydists = []
    for i in range(len(xb)):
        xba = np.tile(xb[i], (size[1], 1)).transpose()
        yba = np.tile(yb[i], (size[0], 1))
        cxdists.append(np.abs(xarray - xba))
        cydists.append(np.abs(yarray - yba))
    xdist = np.minimum.reduce(cxdists)
    ydist = np.minimum.reduce(cydists)
    manhdist = np.minimum.reduce([xdist, ydist])
    im = (manhdist + 1) / (boundwidth + 1) * 1.0
    im[im >= 1.0] = 1.0
    return im


class AlignedDataset(BaseDataset):
    @staticmethod
    def modify_commandline_options(parser, is_train):
        return parser

    def initialize(self, opt):
        self.opt = opt
        self.root = opt.dataroot
        imglist = 'datasets/apdrawing_list/%s/%s.txt' % (opt.phase, opt.dataroot)
        if os.path.exists(imglist):
            lines = open(imglist, 'r').read().splitlines()
            lines = sorted(lines)
            self.AB_paths = [line.split()[0] for line in lines]
            if len(lines[0].split()) == 2:
                self.B_paths = [line.split()[1] for line in lines]
        else:
            self.dir_AB = os.path.join(opt.dataroot, opt.phase)
            self.AB_paths = sorted(make_dataset(self.dir_AB))
        assert (opt.resize_or_crop == 'resize_and_crop')

    def __getitem__(self, index):
        AB_path = self.AB_paths[index]
        AB = Image.open(AB_path).convert('RGB')
        w, h = AB.size
        if w / h == 2:
            w2 = int(w / 2)
            A = AB.crop((0, 0, w2, h)).resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC)
            B = AB.crop((w2, 0, w, h)).resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC)
        else:  # if w/h != 2, need B_paths
            A = AB.resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC)
            B = Image.open(self.B_paths[index]).convert('RGB')
            B = B.resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC)
        A = transforms.ToTensor()(A)
        B = transforms.ToTensor()(B)
        w_offset = random.randint(0, max(0, self.opt.loadSize - self.opt.fineSize - 1))
        h_offset = random.randint(0, max(0, self.opt.loadSize - self.opt.fineSize - 1))

        A = A[:, h_offset:h_offset + self.opt.fineSize, w_offset:w_offset + self.opt.fineSize]  # C,H,W
        B = B[:, h_offset:h_offset + self.opt.fineSize, w_offset:w_offset + self.opt.fineSize]

        A = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(A)
        B = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(B)

        if self.opt.which_direction == 'BtoA':
            input_nc = self.opt.output_nc
            output_nc = self.opt.input_nc
        else:
            input_nc = self.opt.input_nc
            output_nc = self.opt.output_nc

        flipped = False
        if (not self.opt.no_flip) and random.random() < 0.5:
            flipped = True
            idx = [i for i in range(A.size(2) - 1, -1, -1)]
            idx = torch.LongTensor(idx)
            A = A.index_select(2, idx)
            B = B.index_select(2, idx)

        if input_nc == 1:  # RGB to gray
            tmp = A[0, ...] * 0.299 + A[1, ...] * 0.587 + A[2, ...] * 0.114
            A = tmp.unsqueeze(0)

        if output_nc == 1:  # RGB to gray
            tmp = B[0, ...] * 0.299 + B[1, ...] * 0.587 + B[2, ...] * 0.114
            B = tmp.unsqueeze(0)

        item = {'A': A, 'B': B,
                'A_paths': AB_path, 'B_paths': AB_path}

        if self.opt.use_local:
            regions = ['eyel', 'eyer', 'nose', 'mouth']
            basen = os.path.basename(AB_path)[:-4] + '.txt'
            if self.opt.region_enm in [0, 1]:
                featdir = self.opt.lm_dir
                featpath = os.path.join(featdir, basen)
                feats = getfeats(featpath)
                if flipped:
                    for i in range(5):
                        feats[i, 0] = self.opt.fineSize - feats[i, 0] - 1
                    tmp = [feats[0, 0], feats[0, 1]]
                    feats[0, :] = [feats[1, 0], feats[1, 1]]
                    feats[1, :] = tmp
                mouth_x = int((feats[3, 0] + feats[4, 0]) / 2.0)
                mouth_y = int((feats[3, 1] + feats[4, 1]) / 2.0)
                ratio = self.opt.fineSize / 256
                EYE_H = self.opt.EYE_H * ratio
                EYE_W = self.opt.EYE_W * ratio
                NOSE_H = self.opt.NOSE_H * ratio
                NOSE_W = self.opt.NOSE_W * ratio
                MOUTH_H = self.opt.MOUTH_H * ratio
                MOUTH_W = self.opt.MOUTH_W * ratio
                center = torch.LongTensor(
                    [[feats[0, 0], feats[0, 1] - 4 * ratio], [feats[1, 0], feats[1, 1] - 4 * ratio],
                     [feats[2, 0], feats[2, 1] - NOSE_H / 2 + 16 * ratio], [mouth_x, mouth_y]])
                item['center'] = center
                rhs = [int(EYE_H), int(EYE_H), int(NOSE_H), int(MOUTH_H)]
                rws = [int(EYE_W), int(EYE_W), int(NOSE_W), int(MOUTH_W)]
                if self.opt.soft_border:
                    soft_border_mask4 = []
                    for i in range(4):
                        xb = [np.zeros(rhs[i]), np.ones(rhs[i]) * (rws[i] - 1)]
                        yb = [np.zeros(rws[i]), np.ones(rws[i]) * (rhs[i] - 1)]
                        soft_border_mask = getSoft([rhs[i], rws[i]], xb, yb)
                        soft_border_mask4.append(torch.Tensor(soft_border_mask).unsqueeze(0))
                        item['soft_' + regions[i] + '_mask'] = soft_border_mask4[i]
                for i in range(4):
                    item[regions[i] + '_A'] = A[:, int(center[i, 1] - rhs[i] / 2):int(center[i, 1] + rhs[i] / 2),
                                              int(center[i, 0] - rws[i] / 2):int(center[i, 0] + rws[i] / 2)]
                    item[regions[i] + '_B'] = B[:, int(center[i, 1] - rhs[i] / 2):int(center[i, 1] + rhs[i] / 2),
                                              int(center[i, 0] - rws[i] / 2):int(center[i, 0] + rws[i] / 2)]
                    if self.opt.soft_border:
                        item[regions[i] + '_A'] = item[regions[i] + '_A'] * soft_border_mask4[i].repeat(
                            int(input_nc / output_nc), 1, 1)
                        item[regions[i] + '_B'] = item[regions[i] + '_B'] * soft_border_mask4[i]
            if self.opt.compactmask:
                cmasks0 = []
                cmasks = []
                for i in range(4):
                    if flipped and i in [0, 1]:
                        cmaskpath = os.path.join(self.opt.cmask_dir, regions[1 - i], basen[:-4] + '.png')
                    else:
                        cmaskpath = os.path.join(self.opt.cmask_dir, regions[i], basen[:-4] + '.png')
                    im_cmask = Image.open(cmaskpath)
                    cmask0 = transforms.ToTensor()(im_cmask)
                    if flipped:
                        cmask0 = cmask0.index_select(2, idx)
                    if output_nc == 1 and cmask0.shape[0] == 3:
                        tmp = cmask0[0, ...] * 0.299 + cmask0[1, ...] * 0.587 + cmask0[2, ...] * 0.114
                        cmask0 = tmp.unsqueeze(0)
                    cmask0 = (cmask0 >= 0.5).float()
                    cmasks0.append(cmask0)
                    cmask = cmask0.clone()
                    if self.opt.region_enm in [0, 1]:
                        cmask = cmask[:, int(center[i, 1] - rhs[i] / 2):int(center[i, 1] + rhs[i] / 2),
                                int(center[i, 0] - rws[i] / 2):int(center[i, 0] + rws[i] / 2)]
                    elif self.opt.region_enm in [2]:  # need to multiply cmask
                        item[regions[i] + '_A'] = (A / 2 + 0.5) * cmask * 2 - 1
                        item[regions[i] + '_B'] = (B / 2 + 0.5) * cmask * 2 - 1
                    cmasks.append(cmask)
                item['cmaskel'] = cmasks[0]
                item['cmasker'] = cmasks[1]
                item['cmask'] = cmasks[2]
                item['cmaskmo'] = cmasks[3]
            if self.opt.hair_local:
                mask = torch.ones(B.shape)
                if self.opt.region_enm == 0:
                    for i in range(4):
                        mask[:, int(center[i, 1] - rhs[i] / 2):int(center[i, 1] + rhs[i] / 2),
                        int(center[i, 0] - rws[i] / 2):int(center[i, 0] + rws[i] / 2)] = 0
                    if self.opt.soft_border:
                        imgsize = self.opt.fineSize
                        maskn = mask[0].numpy()
                        masks = [np.ones([imgsize, imgsize]), np.ones([imgsize, imgsize]), np.ones([imgsize, imgsize]),
                                 np.ones([imgsize, imgsize])]
                        masks[0][1:] = maskn[:-1]
                        masks[1][:-1] = maskn[1:]
                        masks[2][:, 1:] = maskn[:, :-1]
                        masks[3][:, :-1] = maskn[:, 1:]
                        masks2 = [maskn - e for e in masks]
                        bound = np.minimum.reduce(masks2)
                        bound = -bound
                        xb = []
                        yb = []
                        for i in range(4):
                            xbi = [int(center[i, 0] - rws[i] / 2), int(center[i, 0] + rws[i] / 2 - 1)]
                            ybi = [int(center[i, 1] - rhs[i] / 2), int(center[i, 1] + rhs[i] / 2 - 1)]
                            for j in range(2):
                                maskx = bound[:, xbi[j]]
                                masky = bound[ybi[j], :]
                                tmp_a = torch.from_numpy(maskx) * xbi[j]
                                tmp_b = torch.from_numpy(1 - maskx)
                                xb += [tmp_b * 10000 + tmp_a]

                                tmp_a = torch.from_numpy(masky) * ybi[j]
                                tmp_b = torch.from_numpy(1 - masky)
                                yb += [tmp_b * 10000 + tmp_a]
                        soft = 1 - getSoft([imgsize, imgsize], xb, yb)
                        soft = torch.Tensor(soft).unsqueeze(0)
                        mask = (torch.ones(mask.shape) - mask) * soft + mask
                elif self.opt.region_enm == 1:
                    for i in range(4):
                        cmask0 = cmasks0[i]
                        rec = torch.zeros(B.shape)
                        rec[:, int(center[i, 1] - rhs[i] / 2):int(center[i, 1] + rhs[i] / 2),
                        int(center[i, 0] - rws[i] / 2):int(center[i, 0] + rws[i] / 2)] = 1
                        mask = mask * (torch.ones(B.shape) - cmask0 * rec)
                elif self.opt.region_enm == 2:
                    for i in range(4):
                        cmask0 = cmasks0[i]
                        mask = mask * (torch.ones(B.shape) - cmask0)
                hair_A = (A / 2 + 0.5) * mask.repeat(int(input_nc / output_nc), 1, 1) * 2 - 1
                hair_B = (B / 2 + 0.5) * mask * 2 - 1
                item['hair_A'] = hair_A
                item['hair_B'] = hair_B
                item['mask'] = mask  # mask out eyes, nose, mouth
                if self.opt.bg_local:
                    bgdir = self.opt.bg_dir
                    bgpath = os.path.join(bgdir, basen[:-4] + '.png')
                    im_bg = Image.open(bgpath)
                    mask2 = transforms.ToTensor()(im_bg)  # mask out background
                    if flipped:
                        mask2 = mask2.index_select(2, idx)
                    mask2 = (mask2 >= 0.5).float()
                    hair_A = (A / 2 + 0.5) * mask.repeat(int(input_nc / output_nc), 1, 1) * mask2.repeat(
                        int(input_nc / output_nc), 1, 1) * 2 - 1
                    hair_B = (B / 2 + 0.5) * mask * mask2 * 2 - 1
                    bg_A = (A / 2 + 0.5) * (torch.ones(mask2.shape) - mask2).repeat(int(input_nc / output_nc), 1,
                                                                                    1) * 2 - 1
                    bg_B = (B / 2 + 0.5) * (torch.ones(mask2.shape) - mask2) * 2 - 1
                    item['hair_A'] = hair_A
                    item['hair_B'] = hair_B
                    item['bg_A'] = bg_A
                    item['bg_B'] = bg_B
                    item['mask'] = mask
                    item['mask2'] = mask2

        if (self.opt.isTrain and self.opt.chamfer_loss):
            if self.opt.which_direction == 'AtoB':
                img = tocv2(B)
            else:
                img = tocv2(A)
            dt1, dt2 = dt(img)
            dt1 = torch.from_numpy(dt1)
            dt2 = torch.from_numpy(dt2)
            dt1 = dt1.unsqueeze(0)
            dt2 = dt2.unsqueeze(0)
            item['dt1gt'] = dt1
            item['dt2gt'] = dt2

        if self.opt.isTrain and self.opt.emphasis_conti_face:
            face_mask_path = os.path.join(self.opt.facemask_dir, basen[:-4] + '.png')
            face_mask = Image.open(face_mask_path)
            face_mask = transforms.ToTensor()(face_mask)  # [0,1]
            if flipped:
                face_mask = face_mask.index_select(2, idx)
            item['face_mask'] = face_mask

        return item

    def __len__(self):
        return len(self.AB_paths)

    def name(self):
        return 'AlignedDataset'