Spaces:
Running
Running
File size: 13,007 Bytes
80275c5 249fca7 85952ea d967c00 80275c5 a3e054f 80275c5 23a84f2 80275c5 2029299 23a84f2 d967c00 23a84f2 80275c5 1d2c336 23a84f2 1d2c336 80275c5 85952ea 80275c5 85952ea 23a84f2 85952ea 23a84f2 80275c5 6bfad85 95a2a69 80275c5 6bfad85 80275c5 2029299 80275c5 23a84f2 d3e2171 80275c5 6bfad85 80275c5 2029299 80275c5 2029299 80275c5 2029299 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
from collections import defaultdict
import json
from langchain_core.documents import Document
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableParallel
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores.utils import DistanceStrategy
from langchain_openai import ChatOpenAI
from langchain_pinecone import PineconeVectorStore
from pinecone import Pinecone
import streamlit as st
st.set_page_config(layout="wide", page_title="LegisQA")
SS = st.session_state
SEED = 292764
CONGRESS_NUMBERS = [113, 114, 115, 116, 117, 118]
CONGRESS_GOV_TYPE_MAP = {
"hconres": "house-concurrent-resolution",
"hjres": "house-joint-resolution",
"hr": "house-bill",
"hres": "house-resolution",
"s": "senate-bill",
"sconres": "senate-concurrent-resolution",
"sjres": "senate-joint-resolution",
"sres": "senate-resolution",
}
OPENAI_CHAT_MODELS = [
"gpt-3.5-turbo-0125",
"gpt-4-0125-preview",
]
PREAMBLE = "You are an expert analyst. Use the following excerpts from US congressional legislation to respond to the user's query."
PROMPT_TEMPLATES = {
"v1": PREAMBLE
+ """ If you don't know how to respond, just tell the user.
{context}
Question: {question}""",
"v2": PREAMBLE
+ """ Each snippet starts with a header that includes a unique snippet number (snippet_num), a legis_id, and a title. Your response should reference particular snippets using legis_id and title. If you don't know how to respond, just tell the user.
{context}
Question: {question}""",
"v3": PREAMBLE
+ """ Each excerpt starts with a header that includes a legis_id, and a title followed by one or more text snippets. When using text snippets in your response, you should mention the legis_id and title. If you don't know how to respond, just tell the user.
{context}
Question: {question}""",
"v4": PREAMBLE
+ """ The excerpts are formatted as a JSON list. Each JSON object has "legis_id", "title", and "snippets" keys. If a snippet is useful in writing part of your response, then mention the "title" and "legis_id" inline as you write. If you don't know how to respond, just tell the user.
{context}
Query: {question}""",
}
def get_sponsor_url(bioguide_id: str) -> str:
return f"https://bioguide.congress.gov/search/bio/{bioguide_id}"
def get_congress_gov_url(congress_num: int, legis_type: str, legis_num: int) -> str:
lt = CONGRESS_GOV_TYPE_MAP[legis_type]
return f"https://www.congress.gov/bill/{int(congress_num)}th-congress/{lt}/{int(legis_num)}"
def get_govtrack_url(congress_num: int, legis_type: str, legis_num: int) -> str:
return f"https://www.govtrack.us/congress/bills/{int(congress_num)}/{legis_type}{int(legis_num)}"
def load_bge_embeddings():
model_name = "BAAI/bge-small-en-v1.5"
model_kwargs = {"device": "cpu"}
encode_kwargs = {"normalize_embeddings": True}
emb_fn = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
query_instruction="Represent this question for searching relevant passages: ",
)
return emb_fn
def load_pinecone_vectorstore():
emb_fn = load_bge_embeddings()
pc = Pinecone(api_key=st.secrets["pinecone_api_key"])
index = pc.Index(st.secrets["pinecone_index_name"])
vectorstore = PineconeVectorStore(
index=index,
embedding=emb_fn,
text_key="text",
distance_strategy=DistanceStrategy.COSINE,
)
return vectorstore
def write_outreach_links():
nomic_base_url = "https://atlas.nomic.ai/data/gabrielhyperdemocracy"
nomic_map_name = "us-congressional-legislation-s1024o256nomic"
nomic_url = f"{nomic_base_url}/{nomic_map_name}/map"
hf_url = "https://huggingface.co/hyperdemocracy"
pc_url = "https://www.pinecone.io/blog/serverless"
st.subheader(":brain: About [hyperdemocracy](https://hyperdemocracy.us)")
st.subheader(f":world_map: Visualize [nomic atlas]({nomic_url})")
st.subheader(f":hugging_face: Raw [huggingface datasets]({hf_url})")
st.subheader(f":evergreen_tree: Index [pinecone serverless]({pc_url})")
def group_docs(docs) -> list[tuple[str, list[Document]]]:
doc_grps = defaultdict(list)
# create legis_id groups
for doc in docs:
doc_grps[doc.metadata["legis_id"]].append(doc)
# sort docs in each group by start index
for legis_id in doc_grps.keys():
doc_grps[legis_id] = sorted(
doc_grps[legis_id],
key=lambda x: x.metadata["start_index"],
)
# sort groups by number of docs
doc_grps = sorted(
tuple(doc_grps.items()),
key=lambda x: -len(x[1]),
)
return doc_grps
def format_docs_v1(docs):
"""Simple double new line join"""
return "\n\n".join([doc.page_content for doc in docs])
def format_docs_v2(docs):
"""Format with snippet_num, legis_id, and title"""
def format_doc(idoc, doc):
return "snippet_num: {}\nlegis_id: {}\ntitle: {}\n... {} ...\n".format(
idoc,
doc.metadata["legis_id"],
doc.metadata["title"],
doc.page_content,
)
snips = []
for idoc, doc in enumerate(docs):
txt = format_doc(idoc, doc)
snips.append(txt)
return "\n===\n".join(snips)
def format_docs_v3(docs):
def format_header(doc):
return "legis_id: {}\ntitle: {}".format(
doc.metadata["legis_id"],
doc.metadata["title"],
)
def format_content(doc):
return "... {} ...\n".format(
doc.page_content,
)
snips = []
doc_grps = group_docs(docs)
for legis_id, doc_grp in doc_grps:
first_doc = doc_grp[0]
head = format_header(first_doc)
contents = []
for idoc, doc in enumerate(doc_grp):
txt = format_content(doc)
contents.append(txt)
snips.append("{}\n\n{}".format(head, "\n".join(contents)))
return "\n===\n".join(snips)
def format_docs_v4(docs):
"""JSON grouped"""
doc_grps = group_docs(docs)
out = []
for legis_id, doc_grp in doc_grps:
dd = {
"legis_id": doc_grp[0].metadata["legis_id"],
"title": doc_grp[0].metadata["title"],
"snippets": [doc.page_content for doc in doc_grp],
}
out.append(dd)
return json.dumps(out, indent=4)
DOC_FORMATTERS = {
"v1": format_docs_v1,
"v2": format_docs_v2,
"v3": format_docs_v3,
"v4": format_docs_v4,
}
def escape_markdown(text):
MD_SPECIAL_CHARS = r"\`*_{}[]()#+-.!$"
for char in MD_SPECIAL_CHARS:
text = text.replace(char, "\\" + char)
return text
st.title(":classical_building: LegisQA :classical_building:")
st.header("Explore Congressional Legislation")
st.write(
"""When you send a query to LegisQA, it will attempt to retrieve relevant content from the past six congresses ([113th-118th](https://en.wikipedia.org/wiki/List_of_United_States_Congresses)) covering 2013 to the present, pass it to a [large language model (LLM)](https://en.wikipedia.org/wiki/Large_language_model), and generate a response. This technique is known as Retrieval Augmented Generation (RAG). You can read [an academic paper](https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html) or [a high level summary](https://research.ibm.com/blog/retrieval-augmented-generation-RAG) to get more details. Once the response is generated, the retrieved content will be available for inspection with links to the bills and sponsors.
This technique helps to ground the LLM response by providing context from a trusted source, but it does not guarantee a high quality response. We encourage you to play around. Try different models. Find questions that work and find questions that fail.""")
st.header("Example Queries")
st.write("""
```
What are the themes around artificial intelligence?
```
```
Write a well cited 3 paragraph essay on food insecurity.
```
```
Create a table summarizing the major climate change ideas with columns legis_id, title, idea.
```
"""
)
with st.sidebar:
with st.container(border=True):
write_outreach_links()
st.checkbox("escape markdown in answer", key="response_escape_markdown")
with st.expander("Generative Config"):
st.selectbox(label="model name", options=OPENAI_CHAT_MODELS, key="model_name")
st.slider(
"temperature", min_value=0.0, max_value=2.0, value=0.0, key="temperature"
)
st.slider("top_p", min_value=0.0, max_value=1.0, value=1.0, key="top_p")
with st.expander("Retrieval Config"):
st.slider(
"Number of chunks to retrieve",
min_value=1,
max_value=40,
value=10,
key="n_ret_docs",
)
st.text_input("Bill ID (e.g. 118-s-2293)", key="filter_legis_id")
st.text_input("Bioguide ID (e.g. R000595)", key="filter_bioguide_id")
# st.text_input("Congress (e.g. 118)", key="filter_congress_num")
st.multiselect(
"Congress Numbers",
CONGRESS_NUMBERS,
default=CONGRESS_NUMBERS,
key="filter_congress_nums",
)
with st.expander("Prompt Config"):
st.selectbox(
label="prompt version",
options=PROMPT_TEMPLATES.keys(),
index=3,
key="prompt_version",
)
st.text_area(
"prompt template",
PROMPT_TEMPLATES[SS["prompt_version"]],
height=300,
key="prompt_template",
)
llm = ChatOpenAI(
model_name=SS["model_name"],
temperature=SS["temperature"],
openai_api_key=st.secrets["openai_api_key"],
model_kwargs={"top_p": SS["top_p"], "seed": SEED},
)
vectorstore = load_pinecone_vectorstore()
format_docs = DOC_FORMATTERS[SS["prompt_version"]]
with st.form("my_form"):
st.text_area("Enter query:", key="query")
query_submitted = st.form_submit_button("Submit")
def get_vectorstore_filter():
vs_filter = {}
if SS["filter_legis_id"] != "":
vs_filter["legis_id"] = SS["filter_legis_id"]
if SS["filter_bioguide_id"] != "":
vs_filter["sponsor_bioguide_id"] = SS["filter_bioguide_id"]
# if SS["filter_congress_num"] != "":
# vs_filter["congress_num"] = int(SS["filter_congress_num"])
vs_filter = {"congress_num": {"$in": SS["filter_congress_nums"]}}
return vs_filter
if query_submitted:
vs_filter = get_vectorstore_filter()
with st.sidebar:
with st.expander("Debug vs_filter"):
st.write(vs_filter)
retriever = vectorstore.as_retriever(
search_kwargs={"k": SS["n_ret_docs"], "filter": vs_filter},
)
prompt = PromptTemplate.from_template(SS["prompt_template"])
rag_chain_from_docs = (
RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
| prompt
| llm
| StrOutputParser()
)
rag_chain_with_source = RunnableParallel(
{"context": retriever, "question": RunnablePassthrough()}
).assign(answer=rag_chain_from_docs)
out = rag_chain_with_source.invoke(SS["query"])
SS["out"] = out
def write_doc_grp(legis_id: str, doc_grp: list[Document]):
first_doc = doc_grp[0]
congress_gov_url = get_congress_gov_url(
first_doc.metadata["congress_num"],
first_doc.metadata["legis_type"],
first_doc.metadata["legis_num"],
)
congress_gov_link = f"[congress.gov]({congress_gov_url})"
gov_track_url = get_govtrack_url(
first_doc.metadata["congress_num"],
first_doc.metadata["legis_type"],
first_doc.metadata["legis_num"],
)
gov_track_link = f"[govtrack.us]({gov_track_url})"
ref = "{} chunks from {}\n\n{}\n\n{} | {}\n\n[{} ({}) ]({})".format(
len(doc_grp),
first_doc.metadata["legis_id"],
first_doc.metadata["title"],
congress_gov_link,
gov_track_link,
first_doc.metadata["sponsor_full_name"],
first_doc.metadata["sponsor_bioguide_id"],
get_sponsor_url(first_doc.metadata["sponsor_bioguide_id"]),
)
doc_contents = [
"[start_index={}] ".format(int(doc.metadata["start_index"])) + doc.page_content
for doc in doc_grp
]
with st.expander(ref):
st.write(escape_markdown("\n\n...\n\n".join(doc_contents)))
out = SS.get("out")
if out:
if SS["response_escape_markdown"]:
st.info(escape_markdown(out["answer"]))
else:
st.info(out["answer"])
doc_grps = group_docs(out["context"])
for legis_id, doc_grp in doc_grps:
write_doc_grp(legis_id, doc_grp)
with st.expander("Debug doc format"):
st.text_area("formatted docs", value=format_docs(out["context"]), height=600)
|