Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,282 Bytes
92aaea0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# app.py — ZeroGPU対応版
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import os
import subprocess
import traceback
import base64
import io
from pathlib import Path
# FastAPI関連(ハイブリッド構成のため維持)
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
# グローバル変数としてパイプラインを定義(初期値はNone)
pipe = None
face_app = None
upsampler = None
UPSCALE_OK = False
# 0. Cache dir & helpers (起動時に実行)
PERSIST_BASE = Path("/data")
CACHE_ROOT = (PERSIST_BASE / "instantid_cache" if PERSIST_BASE.exists() and os.access(PERSIST_BASE, os.W_OK)
else Path.home() / ".cache" / "instantid_cache")
MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR = CACHE_ROOT/"models", CACHE_ROOT/"models"/"Lora", CACHE_ROOT/"embeddings", CACHE_ROOT/"realesrgan"
for p in (MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR):
p.mkdir(parents=True, exist_ok=True)
def dl(url: str, dst: Path, attempts: int = 2):
if dst.exists(): return
for i in range(1, attempts + 1):
print(f"⬇ Downloading {dst.name} (try {i}/{attempts})")
if subprocess.call(["wget", "-q", "-O", str(dst), url]) == 0: return
raise RuntimeError(f"download failed → {url}")
# 1. Asset download (起動時に実行)
print("— Starting asset download check —")
BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors"
dl("https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=pruned&fp=fp16", BASE_CKPT)
IP_BIN_FILE = LORA_DIR / "ip-adapter-plus-face_sd15.bin"
dl("https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter-plus-face_sd15.bin", IP_BIN_FILE)
LORA_FILE = LORA_DIR / "ip-adapter-faceid-plusv2_sd15_lora.safetensors"
dl("https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors", LORA_FILE)
print("— Asset download check finished —")
# 2. パイプライン初期化関数 (GPU確保後に呼び出される)
def initialize_pipelines():
global pipe, face_app, upsampler, UPSCALE_OK
# torch/diffusers/onnxruntimeなどのインポートを関数内に移動
from diffusers import StableDiffusionPipeline, ControlNetModel, DPMSolverMultistepScheduler, AutoencoderKL
from insightface.app import FaceAnalysis
print("--- Initializing Pipelines (GPU is now available) ---")
device = torch.device("cuda") # ZeroGPUではGPUが保証されている
dtype = torch.float16
# FaceAnalysis
if face_app is None:
print("Initializing FaceAnalysis...")
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=providers)
face_app.prepare(ctx_id=0, det_size=(640, 640))
print("FaceAnalysis initialized.")
# Main Pipeline
if pipe is None:
print("Loading ControlNet...")
controlnet = ControlNetModel.from_pretrained("InstantX/InstantID", subfolder="ControlNetModel", torch_dtype=dtype)
print("Loading StableDiffusionPipeline...")
pipe = StableDiffusionPipeline.from_single_file(BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2)
print("Moving pipeline to GPU...")
pipe.to(device) # .to(device)をここで呼ぶ
print("Loading VAE...")
pipe.vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype).to(device)
pipe.controlnet = controlnet
print("Configuring Scheduler...")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
print("Loading IP-Adapter and LoRA...")
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name=IP_BIN_FILE.name)
pipe.load_lora_weights(str(LORA_DIR), weight_name=LORA_FILE.name)
pipe.set_ip_adapter_scale(0.65)
print("Main pipeline initialized.")
# Upscaler
if upsampler is None and not UPSCALE_OK: # 一度失敗したら再試行しない
print("Checking for Upscaler...")
try:
from basicsr.archs.rrdb_arch import RRDBNet
from realesrgan import RealESRGAN
rrdb = RRDBNet(3, 3, 64, 23, 32, scale=8)
upsampler = RealESRGAN(device, rrdb, scale=8)
upsampler.load_weights(str(UPSCALE_DIR / "RealESRGAN_x8plus.pth"))
UPSCALE_OK = True
print("Upscaler initialized successfully.")
except Exception as e:
UPSCALE_OK = False # 失敗を記録
print(f"Real-ESRGAN disabled → {e}")
print("--- All pipelines ready ---")
# 4. Core generation logic
BASE_PROMPT = ("(masterpiece:1.2), best quality, ultra-realistic, RAW photo, 8k,\n""photo of {subject},\n""cinematic lighting, golden hour, rim light, shallow depth of field,\n""textured skin, high detail, shot on Canon EOS R5, 85 mm f/1.4, ISO 200,\n""<lora:ip-adapter-faceid-plusv2_sd15_lora:0.65>, (face),\n""(aesthetic:1.1), (cinematic:0.8)")
NEG_PROMPT = ("ng_deepnegative_v1_75t, CyberRealistic_Negative-neg, UnrealisticDream, ""(worst quality:2), (low quality:1.8), lowres, (jpeg artifacts:1.2), ""painting, sketch, illustration, drawing, cartoon, anime, cgi, render, 3d, ""monochrome, grayscale, text, logo, watermark, signature, username, ""(MajicNegative_V2:0.8), bad hands, extra digits, fused fingers, malformed limbs, ""missing arms, missing legs, (badhandv4:0.7), BadNegAnatomyV1-neg, skin blemishes, acnes, age spot, glans")
# ZeroGPUで実行される本体。durationを60秒に設定。
@spaces.GPU(duration=60)
def _generate_core(face_img, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor, progress=gr.Progress(track_tqdm=True)):
# 初回呼び出し時にパイプラインを初期化
initialize_pipelines()
progress(0, desc="Generating image...")
prompt = BASE_PROMPT.format(subject=(subject.strip() or "a beautiful 20yo woman"))
if add_prompt: prompt += ", " + add_prompt
neg = NEG_PROMPT + (", " + add_neg if add_neg else "")
pipe.set_ip_adapter_scale(ip_scale)
result = pipe(prompt=prompt, negative_prompt=neg, ip_adapter_image=face_img, image=face_img, controlnet_conditioning_scale=0.9, num_inference_steps=int(steps) + 5, guidance_scale=cfg, width=int(w), height=int(h)).images[0]
if upscale and UPSCALE_OK:
progress(0.8, desc="Upscaling...")
up, _ = upsampler.enhance(cv2.cvtColor(np.array(result), cv2.COLOR_RGB2BGR), outscale=up_factor)
result = Image.fromarray(cv2.cvtColor(up, cv2.COLOR_BGR2RGB))
return result
# GradioのUIから呼び出されるラッパー関数
def generate_ui(face_np, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor, progress=gr.Progress(track_tqdm=True)):
if face_np is None: raise gr.Error("顔画像をアップロードしてください。")
# NumPy配列をPillow画像に変換
face_img = Image.fromarray(face_np)
return _generate_core(face_img, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor, progress)
# 5. Gradio UI Definition
with gr.Blocks() as demo:
gr.Markdown("# InstantID – Beautiful Realistic Asians v7 (ZeroGPU)")
with gr.Row():
with gr.Column():
face_in = gr.Image(label="顔写真",type="numpy")
subj_in = gr.Textbox(label="被写体説明",placeholder="e.g. woman in black suit, smiling")
add_in = gr.Textbox(label="追加プロンプト")
addneg_in = gr.Textbox(label="追加ネガティブ")
with gr.Accordion("詳細設定", open=False):
ip_sld = gr.Slider(0,1.5,0.65,step=0.05,label="IP‑Adapter scale")
cfg_sld = gr.Slider(1,15,6,step=0.5,label="CFG")
step_sld = gr.Slider(10,50,20,step=1,label="Steps")
w_sld = gr.Slider(512,1024,512,step=64,label="幅")
h_sld = gr.Slider(512,1024,768,step=64,label="高さ")
up_ck = gr.Checkbox(label="アップスケール",value=True)
up_fac = gr.Slider(1,8,2,step=1,label="倍率")
btn = gr.Button("生成",variant="primary")
with gr.Column():
out_img = gr.Image(label="結果")
# .queue() はGradioの通常機能として必要
demo.queue()
btn.click(
fn=generate_ui,
inputs=[face_in,subj_in,add_in,addneg_in,cfg_sld,ip_sld,step_sld,w_sld,h_sld,up_ck,up_fac],
outputs=out_img
)
# 6. FastAPI Mounting
app = FastAPI()
# FastAPIのエンドポイントを定義。こちらも内部で_generate_coreを呼ぶ
@app.post("/api/predict")
async def predict_endpoint(
face_image: UploadFile = File(...),
subject: str = Form("a woman"),
add_prompt: str = Form(""),
add_neg: str = Form(""),
cfg: float = Form(6.0),
ip_scale: float = Form(0.65),
steps: int = Form(20),
w: int = Form(512),
h: int = Form(768),
upscale: bool = Form(True),
up_factor: float = Form(2.0)
):
try:
contents = await face_image.read()
pil_image = Image.open(io.BytesIO(contents))
# FastAPI経由の呼び出しも同じコア関数を利用
result_pil_image = _generate_core(
pil_image, subject, add_prompt, add_neg, cfg, ip_scale,
steps, w, h, upscale, up_factor
)
buffered = io.BytesIO()
result_pil_image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return {"image_base64": img_str}
except Exception as e:
traceback.print_exc()
raise HTTPException(status_code=500, detail=str(e))
# GradioアプリをFastAPIアプリにマウント
app = gr.mount_gradio_app(app, demo, path="/")
print("Application startup script finished. Waiting for requests.")
# app.py の末尾に追加
if __name__ == "__main__":
import uvicorn
# SpacesでGradioアプリを動かす際の標準ポートは7860です
uvicorn.run(app, host="0.0.0.0", port=7860) |