Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,530 Bytes
61b1f58 92aaea0 45eb86f 61b1f58 45eb86f 92aaea0 4fd7fe3 61b1f58 45eb86f 61b1f58 45eb86f 61b1f58 92aaea0 61b1f58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# app.py — InstantID × Beautiful Realistic Asians v7 (ZeroGPU-friendly, persistent cache)
"""Persistent-cache backend for InstantID portrait generation.
- Caches model assets under /data when writable, else ~/.cache
- Robust download with retry + multiple fallback URLs per asset
"""
import os, subprocess, cv2, torch, spaces, gradio as gr, numpy as np
from pathlib import Path
from PIL import Image
from diffusers import (
StableDiffusionPipeline, ControlNetModel,
DPMSolverMultistepScheduler, AutoencoderKL,
)
from insightface.app import FaceAnalysis
##############################################################################
# 0. Cache dir & helpers
##############################################################################
PERSIST_BASE = Path("/data")
CACHE_ROOT = (PERSIST_BASE / "instantid_cache" if PERSIST_BASE.exists() and os.access(PERSIST_BASE, os.W_OK)
else Path.home() / ".cache" / "instantid_cache")
print("cache →", CACHE_ROOT)
MODELS_DIR = CACHE_ROOT / "models"
LORA_DIR = MODELS_DIR / "Lora"
EMB_DIR = CACHE_ROOT / "embeddings"
UPSCALE_DIR = CACHE_ROOT / "realesrgan"
for p in (MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR):
p.mkdir(parents=True, exist_ok=True)
def dl(url: str, dst: Path, attempts: int = 2):
if dst.exists():
print("✓", dst.relative_to(CACHE_ROOT)); return
for i in range(1, attempts + 1):
print(f"⬇ {dst.name} (try {i}/{attempts})")
if subprocess.call(["wget", "-q", "-O", str(dst), url]) == 0:
return
raise RuntimeError(f"download failed → {url}")
##############################################################################
# 1. Asset download
##############################################################################
print("— asset check —")
# 1-A. base ckpt
BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors"
dl("https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=pruned&fp=fp16", BASE_CKPT)
# 1-B. IP-Adapter core + FaceID LoRA
IP_BIN_FILE = LORA_DIR / "ip-adapter-plus-face_sd15.bin"
dl("https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter-plus-face_sd15.bin", IP_BIN_FILE)
LORA_FILE = LORA_DIR / "ip-adapter-faceid-plusv2_sd15_lora.safetensors"
dl("https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors", LORA_FILE)
# 1-C. textual-inversion embeddings
EMB_URLS = {
"ng_deepnegative_v1_75t.pt": [
"https://huggingface.co/datasets/gsdf/EasyNegative/resolve/main/ng_deepnegative_v1_75t.pt",
"https://huggingface.co/mrpxl2/animetarotV51.safetensors/raw/cc3008c0148061896549a995cc297aef0af4ef1b/ng_deepnegative_v1_75t.pt",
],
"badhandv4.pt": [
"https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/badhandv4.pt",
"https://huggingface.co/nolanaatama/embeddings/raw/main/badhandv4.pt",
],
"CyberRealistic_Negative-neg.pt": [
"https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/CyberRealistic_Negative-neg.pt",
"https://huggingface.co/wsj1995/embeddings/raw/main/CyberRealistic_Negative-neg.civitai.info",
],
"UnrealisticDream.pt": [
"https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/UnrealisticDream.pt",
"https://huggingface.co/imagepipeline/UnrealisticDream/raw/main/f84133b4-aad8-44be-b9ce-7e7e3a8c111f.pt",
],
}
for fname, urls in EMB_URLS.items():
dst = EMB_DIR / fname
for idx, u in enumerate(urls, 1):
try:
dl(u, dst); break
except RuntimeError:
if idx == len(urls): raise
print(" ↳ fallback URL …")
# 1-D. Real-ESRGAN weights 8×
RRG_WEIGHTS = UPSCALE_DIR / "RealESRGAN_x8plus.pth"
RRG_URLS = [
"https://huggingface.co/NoCrypt/Superscale_RealESRGAN/resolve/main/RealESRGAN_x8plus.pth",
"https://huggingface.co/ai-forever/Real-ESRGAN/raw/main/RealESRGAN_x8.pth",
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/8x_NMKD-Superscale_100k.pth",
]
for idx, link in enumerate(RRG_URLS, 1):
try:
dl(link, RRG_WEIGHTS); break
except RuntimeError:
if idx == len(RRG_URLS): raise
print(" ↳ fallback URL …")
##############################################################################
# 2. Runtime init
##############################################################################
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
print("device:", device, "| dtype:", dtype)
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if torch.cuda.is_available() else ["CPUExecutionProvider"]
face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=providers)
face_app.prepare(ctx_id=(0 if torch.cuda.is_available() else -1), det_size=(640, 640))
controlnet = ControlNetModel.from_pretrained("InstantX/InstantID", subfolder="ControlNetModel", torch_dtype=dtype)
pipe = StableDiffusionPipeline.from_single_file(BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2)
pipe.vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype).to(device)
pipe.controlnet = controlnet
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
pipe.load_ip_adapter(str(LORA_DIR), subfolder="", weight_name=IP_BIN_FILE.name)
# load FaceID LoRA (Δ only LoRA weights, not full IP-Adapter)
pipe.load_lora_weights(str(LORA_DIR), weight_name=LORA_FILE.name)
pipe.set_ip_adapter_scale(0.65)
for emb in EMB_DIR.glob("*.*"):
try:
pipe.load_textual_inversion(emb, token=emb.stem)
print("emb loaded →", emb.stem)
except Exception:
print("emb skip →", emb.name)
pipe.to(device)
print("pipeline ready ✔")
##############################################################################
# 3. Upscaler
##############################################################################
try:
from basicsr.archs.rrdb_arch import RRDBNet
try:
from realesrgan import RealESRGAN
except ImportError:
from realesrgan import RealESRGANer as RealESRGAN
rrdb = RRDBNet(3, 3, 64, 23, 32, scale=8)
upsampler = RealESRGAN(device, rrdb, scale=8)
upsampler.load_weights(str(RRG_WEIGHTS))
UPSCALE_OK = True
except Exception as e:
print("Real-ESRGAN disabled →", e)
UPSCALE_OK = False
##############################################################################
# 4. Prompts & generation
##############################################################################
BASE_PROMPT = (
"(masterpiece:1.2), best quality, ultra-realistic, RAW photo, 8k,\n"
"photo of {subject},\n"
"cinematic lighting, golden hour, rim light, shallow depth of field,\n"
"textured skin, high detail, shot on Canon EOS R5, 85 mm f/1.4, ISO 200,\n"
"<lora:ip-adapter-faceid-plusv2_sd15_lora:0.65>, (face),\n"
"(aesthetic:1.1), (cinematic:0.8)"
)
# [!!] 下記のNEG_PROMPTを修正しました。不要なカンマと重複した文字列を削除し、単一の文字列になるようにしました。
NEG_PROMPT = (
"ng_deepnegative_v1_75t, CyberRealistic_Negative-neg, UnrealisticDream, "
"(worst quality:2), (low quality:1.8), lowres, (jpeg artifacts:1.2), "
"painting, sketch, illustration, drawing, cartoon, anime, cgi, render, 3d, "
"monochrome, grayscale, text, logo, watermark, signature, username, "
"(MajicNegative_V2:0.8), bad hands, extra digits, fused fingers, malformed limbs, "
"missing arms, missing legs, (badhandv4:0.7), BadNegAnatomyV1-neg, skin blemishes, acnes, age spot, glans"
)
@spaces.GPU(duration=90)
def generate(
face_np, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor,
progress=gr.Progress(track_tqdm=True)
):
if face_np is None or face_np.size == 0:
raise gr.Error("顔画像をアップロードしてください。")
prompt = BASE_PROMPT.format(subject=(subject.strip() or "a beautiful 20yo woman"))
if add_prompt:
prompt += ", " + add_prompt
neg = NEG_PROMPT + (", " + add_neg if add_neg else "")
pipe.set_ip_adapter_scale(ip_scale)
img_in = Image.fromarray(face_np)
result = pipe(
prompt=prompt,
negative_prompt=neg,
ip_adapter_image=img_in,
image=img_in,
controlnet_conditioning_scale=0.9,
num_inference_steps=int(steps) + 5,
guidance_scale=cfg,
width=int(w),
height=int(h),
).images[0]
if upscale:
if UPSCALE_OK:
up, _ = upsampler.enhance(cv2.cvtColor(np.array(result), cv2.COLOR_RGB2BGR), outscale=up_factor)
result = Image.fromarray(cv2.cvtColor(up, cv2.COLOR_BGR2RGB))
else:
result = result.resize((int(result.width * up_factor), int(result.height * up_factor)), Image.LANCZOS)
return result
##############################################################################
# 5. Gradio UI
##############################################################################
with gr.Blocks() as demo:
gr.Markdown("# InstantID – Beautiful Realistic Asians v7")
with gr.Row():
with gr.Column():
face_in = gr.Image(label="顔写真", type="numpy")
subj_in = gr.Textbox(label="被写体説明", placeholder="e.g. woman in black suit, smiling")
add_in = gr.Textbox(label="追加プロンプト")
addneg_in = gr.Textbox(label="追加ネガティブ")
ip_sld = gr.Slider(0, 1.5, 0.65, step=0.05, label="IP-Adapter scale")
cfg_sld = gr.Slider(1, 15, 6, step=0.5, label="CFG")
step_sld = gr.Slider(10, 50, 20, step=1, label="Steps")
w_sld = gr.Slider(512, 1024, 512, step=64, label="幅")
h_sld = gr.Slider(512, 1024, 768, step=64, label="高さ")
up_ck = gr.Checkbox(label="アップスケール", value=True)
up_fac = gr.Slider(1, 8, 2, step=1, label="倍率")
btn = gr.Button("生成", variant="primary")
with gr.Column():
out_img = gr.Image(label="結果")
btn.click(
generate,
[face_in, subj_in, add_in, addneg_in, cfg_sld, ip_sld, step_sld, w_sld, h_sld, up_ck, up_fac],
out_img,
api_name="predict",
)
print("launching …")
demo.queue().launch(show_error=True) |