File size: 11,406 Bytes
61b1f58
 
e0bbeb9
 
61b1f58
c09be26
 
 
 
 
 
 
 
 
 
 
61b1f58
92aaea0
45eb86f
 
61b1f58
 
45eb86f
 
92aaea0
4fd7fe3
e0bbeb9
61b1f58
 
e0bbeb9
 
 
 
 
61b1f58
 
 
e0bbeb9
61b1f58
 
 
 
 
 
e0bbeb9
61b1f58
 
 
 
 
 
 
 
 
e0bbeb9
61b1f58
 
 
e0bbeb9
61b1f58
e0bbeb9
 
 
 
61b1f58
e0bbeb9
61b1f58
e0bbeb9
 
 
 
61b1f58
e0bbeb9
61b1f58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0bbeb9
61b1f58
 
 
 
 
 
 
 
 
 
 
 
 
 
e0bbeb9
61b1f58
 
 
 
 
e0bbeb9
 
 
 
 
61b1f58
 
 
e0bbeb9
 
 
 
 
 
 
 
 
 
61b1f58
e0bbeb9
 
 
fc0ad0a
e0bbeb9
fc0ad0a
e0bbeb9
 
 
fc0ad0a
e0bbeb9
fc0ad0a
e0bbeb9
61b1f58
 
 
e0bbeb9
61b1f58
 
 
 
 
 
 
 
 
 
e0bbeb9
61b1f58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0bbeb9
61b1f58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45eb86f
61b1f58
 
 
e0bbeb9
61b1f58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0bbeb9
 
 
61b1f58
 
e0bbeb9
 
 
 
61b1f58
 
 
 
 
 
 
45eb86f
61b1f58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92aaea0
61b1f58
641f2d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# app.py — InstantID × Beautiful Realistic Asians v7 (ZeroGPU-friendly, persistent cache)
"""Persistent-cache backend for InstantID portrait generation.
   * 依存モデルは /data が書込可ならそこへ、それ以外は ~/.cache に保存
   * wget を使った簡易リトライ DL
"""
# --- ★ Monkey-Patch: torchvision 0.17+ で消えた functional_tensor を補完 ---
import types, sys
from torchvision.transforms import functional as F

mod = types.ModuleType("torchvision.transforms.functional_tensor")
# 必要なのは rgb_to_grayscale だけなのでこれだけエイリアス
mod.rgb_to_grayscale = F.rgb_to_grayscale
sys.modules["torchvision.transforms.functional_tensor"] = mod
# ---------------------------------------------------------------------------


import os, subprocess, cv2, torch, spaces, gradio as gr, numpy as np
from pathlib import Path
from PIL import Image
from diffusers import (
    StableDiffusionPipeline, ControlNetModel,
    DPMSolverMultistepScheduler, AutoencoderKL,
)
from insightface.app import FaceAnalysis

##############################################################################
# 0. キャッシュ用ディレクトリ
##############################################################################
PERSIST_BASE = Path("/data")
CACHE_ROOT = (
    PERSIST_BASE / "instantid_cache"
    if PERSIST_BASE.exists() and os.access(PERSIST_BASE, os.W_OK)
    else Path.home() / ".cache" / "instantid_cache"
)
print("cache →", CACHE_ROOT)

MODELS_DIR  = CACHE_ROOT / "models"
LORA_DIR    = MODELS_DIR / "Lora"            # FaceID LoRA などを置く
EMB_DIR     = CACHE_ROOT / "embeddings"
UPSCALE_DIR = CACHE_ROOT / "realesrgan"
for p in (MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR):
    p.mkdir(parents=True, exist_ok=True)

def dl(url: str, dst: Path, attempts: int = 2):
    """wget + リトライの簡易ダウンローダ"""
    if dst.exists():
        print("✓", dst.relative_to(CACHE_ROOT)); return
    for i in range(1, attempts + 1):
        print(f"⬇ {dst.name} (try {i}/{attempts})")
        if subprocess.call(["wget", "-q", "-O", str(dst), url]) == 0:
            return
    raise RuntimeError(f"download failed → {url}")

##############################################################################
# 1. 必要アセットのダウンロード
##############################################################################
print("— asset check —")

# 1-A. ベース checkpoint
BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors"
dl(
    "https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=pruned&fp=fp16",
    BASE_CKPT,
)

# 1-B. FaceID LoRA(Δのみ)
LORA_FILE = LORA_DIR / "ip-adapter-faceid-plusv2_sd15_lora.safetensors"
dl(
    "https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors",
    LORA_FILE,
)

# 1-C. textual inversion Embeddings
EMB_URLS = {
    "ng_deepnegative_v1_75t.pt": [
        "https://huggingface.co/datasets/gsdf/EasyNegative/resolve/main/ng_deepnegative_v1_75t.pt",
        "https://huggingface.co/mrpxl2/animetarotV51.safetensors/raw/cc3008c0148061896549a995cc297aef0af4ef1b/ng_deepnegative_v1_75t.pt",
    ],
    "badhandv4.pt": [
        "https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/badhandv4.pt",
        "https://huggingface.co/nolanaatama/embeddings/raw/main/badhandv4.pt",
    ],
    "CyberRealistic_Negative-neg.pt": [
        "https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/CyberRealistic_Negative-neg.pt",
        "https://huggingface.co/wsj1995/embeddings/raw/main/CyberRealistic_Negative-neg.civitai.info",
    ],
    "UnrealisticDream.pt": [
        "https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/UnrealisticDream.pt",
        "https://huggingface.co/imagepipeline/UnrealisticDream/raw/main/f84133b4-aad8-44be-b9ce-7e7e3a8c111f.pt",
    ],
}
for fname, urls in EMB_URLS.items():
    dst = EMB_DIR / fname
    for idx, u in enumerate(urls, 1):
        try:
            dl(u, dst); break
        except RuntimeError:
            if idx == len(urls): raise
            print("    ↳ fallback URL …")

# 1-D. Real-ESRGAN weights (×8)
RRG_WEIGHTS = UPSCALE_DIR / "RealESRGAN_x8plus.pth"
RRG_URLS = [
    "https://huggingface.co/NoCrypt/Superscale_RealESRGAN/resolve/main/RealESRGAN_x8plus.pth",
    "https://huggingface.co/ai-forever/Real-ESRGAN/raw/main/RealESRGAN_x8.pth",
    "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/8x_NMKD-Superscale_100k.pth",
]
for idx, link in enumerate(RRG_URLS, 1):
    try:
        dl(link, RRG_WEIGHTS); break
    except RuntimeError:
        if idx == len(RRG_URLS): raise
        print("    ↳ fallback URL …")

##############################################################################
# 2. ランタイム初期化
##############################################################################
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype  = torch.float16 if torch.cuda.is_available() else torch.float32
print("device:", device, "| dtype:", dtype)

providers = (
    ["CUDAExecutionProvider", "CPUExecutionProvider"]
    if torch.cuda.is_available()
    else ["CPUExecutionProvider"]
)
face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=providers)
face_app.prepare(ctx_id=(0 if torch.cuda.is_available() else -1), det_size=(640, 640))

# ControlNet + SD パイプライン
controlnet = ControlNetModel.from_pretrained(
    "InstantX/InstantID", subfolder="ControlNetModel", torch_dtype=dtype
)
pipe = StableDiffusionPipeline.from_single_file(
    BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2
)
pipe.vae = AutoencoderKL.from_pretrained(
    "stabilityai/sd-vae-ft-mse", torch_dtype=dtype
).to(device)
pipe.controlnet = controlnet
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
    pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
)

# --- ここが核心:画像エンコーダ込みで公式レポから直接ロード ------------------
pipe.load_ip_adapter(
    "h94/IP-Adapter",               # Hugging Face Hub ID
    subfolder="models",             # ip-adapter-plus-face_sd15.bin が入っているフォルダ
    weight_name="ip-adapter-plus-face_sd15.bin",
)
# ---------------------------------------------------------------------------

# FaceID LoRA(差分 LoRA のみ)
pipe.load_lora_weights(str(LORA_DIR), weight_name=LORA_FILE.name)
pipe.set_ip_adapter_scale(0.65)

# textual inversion 読み込み
for emb in EMB_DIR.glob("*.*"):
    try:
        pipe.load_textual_inversion(emb, token=emb.stem)
        print("emb loaded →", emb.stem)
    except Exception:
        print("emb skip →", emb.name)
pipe.to(device)
print("pipeline ready ✔")

##############################################################################
# 3. アップスケーラ
##############################################################################
try:
    from basicsr.archs.rrdb_arch import RRDBNet
    try:
        from realesrgan import RealESRGAN
    except ImportError:
        from realesrgan import RealESRGANer as RealESRGAN
    rrdb = RRDBNet(3, 3, 64, 23, 32, scale=8)
    upsampler = RealESRGAN(device, rrdb, scale=8)
    upsampler.load_weights(str(RRG_WEIGHTS))
    UPSCALE_OK = True
except Exception as e:
    print("Real-ESRGAN disabled →", e)
    UPSCALE_OK = False

##############################################################################
# 4. プロンプト & 生成関数
##############################################################################
BASE_PROMPT = (
    "(masterpiece:1.2), best quality, ultra-realistic, RAW photo, 8k,\n"
    "photo of {subject},\n"
    "cinematic lighting, golden hour, rim light, shallow depth of field,\n"
    "textured skin, high detail, shot on Canon EOS R5, 85 mm f/1.4, ISO 200,\n"
    "<lora:ip-adapter-faceid-plusv2_sd15_lora:0.65>, (face),\n"
    "(aesthetic:1.1), (cinematic:0.8)"
)
NEG_PROMPT = (
    "ng_deepnegative_v1_75t, CyberRealistic_Negative-neg, UnrealisticDream, "
    "(worst quality:2), (low quality:1.8), lowres, (jpeg artifacts:1.2), "
    "painting, sketch, illustration, drawing, cartoon, anime, cgi, render, 3d, "
    "monochrome, grayscale, text, logo, watermark, signature, username, "
    "(MajicNegative_V2:0.8), bad hands, extra digits, fused fingers, malformed limbs, "
    "missing arms, missing legs, (badhandv4:0.7), BadNegAnatomyV1-neg, skin blemishes, acnes, age spot, glans"
)

@spaces.GPU(duration=90)
def generate(
    face_np, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor,
    progress=gr.Progress(track_tqdm=True),
):
    if face_np is None or face_np.size == 0:
        raise gr.Error("顔画像をアップロードしてください。")

    prompt = BASE_PROMPT.format(subject=(subject.strip() or "a beautiful 20yo woman"))
    if add_prompt:
        prompt += ", " + add_prompt
    neg = NEG_PROMPT + (", " + add_neg if add_neg else "")

    pipe.set_ip_adapter_scale(ip_scale)
    img_in = Image.fromarray(face_np)

    result = pipe(
        prompt=prompt,
        negative_prompt=neg,
        ip_adapter_image=img_in,
        image=img_in,
        controlnet_conditioning_scale=0.9,
        num_inference_steps=int(steps) + 5,
        guidance_scale=cfg,
        width=int(w),
        height=int(h),
    ).images[0]

    if upscale:
        if UPSCALE_OK:
            up, _ = upsampler.enhance(
                cv2.cvtColor(np.array(result), cv2.COLOR_RGB2BGR), outscale=up_factor
            )
            result = Image.fromarray(cv2.cvtColor(up, cv2.COLOR_BGR2RGB))
        else:
            result = result.resize(
                (int(result.width * up_factor), int(result.height * up_factor)),
                Image.LANCZOS,
            )
    return result

##############################################################################
# 5. Gradio UI
##############################################################################
with gr.Blocks() as demo:
    gr.Markdown("# InstantID – Beautiful Realistic Asians v7")
    with gr.Row():
        with gr.Column():
            face_in   = gr.Image(label="顔写真", type="numpy")
            subj_in   = gr.Textbox(label="被写体説明", placeholder="e.g. woman in black suit, smiling")
            add_in    = gr.Textbox(label="追加プロンプト")
            addneg_in = gr.Textbox(label="追加ネガティブ")
            ip_sld    = gr.Slider(0, 1.5, 0.65, step=0.05, label="IP-Adapter scale")
            cfg_sld   = gr.Slider(1, 15, 6, step=0.5, label="CFG")
            step_sld  = gr.Slider(10, 50, 20, step=1, label="Steps")
            w_sld     = gr.Slider(512, 1024, 512, step=64, label="幅")
            h_sld     = gr.Slider(512, 1024, 768, step=64, label="高さ")
            up_ck     = gr.Checkbox(label="アップスケール", value=True)
            up_fac    = gr.Slider(1, 8, 2, step=1, label="倍率")
            btn       = gr.Button("生成", variant="primary")
        with gr.Column():
            out_img = gr.Image(label="結果")

    btn.click(
        generate,
        [face_in, subj_in, add_in, addneg_in, cfg_sld, ip_sld, step_sld, w_sld, h_sld, up_ck, up_fac],
        out_img,
        api_name="predict",
    )

print("launching …")
demo.queue().launch(show_error=True)