Spaces:
Running
on
Zero
Running
on
Zero
# app.py — InstantID × Beautiful Realistic Asians v7(ZeroGPU / ControlNetMediaPipeFace) | |
# 2025-06-22 版 | |
############################################################################## | |
# 0. 旧 API → 新 API 互換パッチ(必ず diffusers import の前に置く) | |
############################################################################## | |
from huggingface_hub import hf_hub_download | |
import huggingface_hub as _hf_hub | |
# diffusers-0.27 は cached_download() を呼び出すため、HF-Hub ≥0.28 でも使えるように注入 | |
if not hasattr(_hf_hub, "cached_download"): | |
_hf_hub.cached_download = hf_hub_download # :contentReference[oaicite:1]{index=1} | |
############################################################################## | |
# 1. 標準 & 外部ライブラリ | |
############################################################################## | |
import os, io, base64, subprocess, traceback | |
from pathlib import Path | |
from typing import Optional | |
import numpy as np | |
import torch | |
import gradio as gr | |
import spaces | |
from fastapi import FastAPI, UploadFile, File, Form, HTTPException | |
from PIL import Image | |
from diffusers import ( | |
StableDiffusionControlNetPipeline, | |
ControlNetModel, | |
DPMSolverMultistepScheduler, | |
AutoencoderKL, | |
) | |
from diffusers.loaders import AttnProcsLayers | |
from insightface.app import FaceAnalysis | |
from basicsr.utils.download_util import load_file_from_url | |
from realesrgan import RealESRGANer | |
############################################################################## | |
# 2. キャッシュ & 永続パス | |
############################################################################## | |
PERSIST_BASE = Path("/data") | |
CACHE_ROOT = ( | |
PERSIST_BASE / "instantid_cache" | |
if PERSIST_BASE.exists() and os.access(PERSIST_BASE, os.W_OK) | |
else Path.home() / ".cache" / "instantid_cache" | |
) | |
MODELS_DIR = CACHE_ROOT / "models" | |
LORA_DIR = CACHE_ROOT / "lora" | |
UPSCALE_DIR = CACHE_ROOT / "realesrgan" | |
for p in (MODELS_DIR, LORA_DIR, UPSCALE_DIR): | |
p.mkdir(parents=True, exist_ok=True) | |
############################################################################## | |
# 3. モデル識別子 & ファイル名 | |
############################################################################## | |
# すべて HF Hub 側にバイナリがあるため、curl ではなく hf_hub_download() を推奨 | |
BRA_REPO = "i0switch-assets/Beautiful_Realistic_Asians_v7" | |
BRA_FILE = "beautiful_realistic_asians_v7_fp16.safetensors" | |
IP_REPO = "h94/IP-Adapter" | |
IP_FILE_BIN = "ip-adapter-plus-face_sd15.bin" # Git LFS バイナリ :contentReference[oaicite:2]{index=2} | |
IP_LORA_REPO = "h94/IP-Adapter-FaceID" | |
IP_FILE_LORA = "ip-adapter-faceid-plusv2_sd15_lora.safetensors" # Git LFS バイナリ | |
CN_REPO = "CrucibleAI/ControlNetMediaPipeFace" # 公開・無認証で DL 可 :contentReference[oaicite:3]{index=3} | |
CN_FOLDER = "diffusion_sd15" # SD-1.5 用フォルダ :contentReference[oaicite:4]{index=4} | |
REALESRGAN_REPO = "aimagelab/realesrgan" | |
REALESRGAN_FILE = "RealESRGAN_x4plus.pth" | |
############################################################################## | |
# 4. ダウンローダ(HF Hub 優先) | |
############################################################################## | |
def dl_hf(repo: str, filename: str, subfolder: Optional[str] = None) -> Path: | |
"""HF Hub から大容量バイナリを安全に取得(Git LFS ポインタ問題を回避)""" | |
return Path( | |
hf_hub_download( | |
repo_id=repo, | |
filename=filename, | |
subfolder=subfolder, | |
cache_dir=str(MODELS_DIR), | |
) | |
) | |
def dl_http(url: str, dst: Path): | |
"""小さなファイルのみ curl で取得(retry 付)""" | |
if dst.exists(): | |
return dst | |
for _ in range(2): | |
try: | |
subprocess.check_call(["curl", "-L", "-o", str(dst), url]) | |
return dst | |
except subprocess.CalledProcessError: | |
pass | |
load_file_from_url(url=url, model_dir=str(dst.parent), file_name=dst.name) | |
return dst | |
############################################################################## | |
# 5. グローバル変数(lazy-load) | |
############################################################################## | |
pipe: Optional[StableDiffusionControlNetPipeline] = None | |
face_analyser: Optional[FaceAnalysis] = None | |
upsampler: Optional[RealESRGANer] = None | |
############################################################################## | |
# 6. パイプライン初期化 | |
############################################################################## | |
def initialize_pipelines(): | |
global pipe, face_analyser, upsampler | |
if pipe is not None: | |
return | |
print("[INIT] Downloading model assets …") | |
# 6-1 主要モデル | |
bra_ckpt = dl_hf(BRA_REPO, BRA_FILE) | |
ip_bin = dl_hf(IP_REPO, IP_FILE_BIN) | |
ip_lora = dl_hf(IP_LORA_REPO, IP_FILE_LORA) | |
cn_model = ControlNetModel.from_pretrained( | |
CN_REPO, subfolder=CN_FOLDER, torch_dtype=torch.float16, cache_dir=str(MODELS_DIR) | |
) | |
# 6-2 Diffusers パイプライン | |
pipe_tmp = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
controlnet=cn_model, | |
vae=AutoencoderKL.from_pretrained( | |
"stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16 | |
), | |
torch_dtype=torch.float16, | |
cache_dir=str(MODELS_DIR), | |
safety_checker=None, | |
) | |
pipe_tmp.scheduler = DPMSolverMultistepScheduler.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
subfolder="scheduler", | |
cache_dir=str(MODELS_DIR), | |
) | |
# 6-3 IP-Adapter ロード(必須 3 引数) :contentReference[oaicite:5]{index=5} | |
pipe_tmp.load_ip_adapter( | |
str(ip_bin.parent), # repo_or_path | |
"", # subfolder(直下なので空文字) | |
ip_bin.name # weight_name | |
) | |
AttnProcsLayers(pipe_tmp.unet.attn_processors).load_lora_weights( | |
ip_lora, adapter_name="ip_faceid", safe_load=True | |
) | |
pipe_tmp.set_adapters(["ip_faceid"], adapter_weights=[0.6]) | |
pipe_tmp.to("cuda") | |
pipe = pipe_tmp | |
# 6-4 InsightFace | |
face_analyser = FaceAnalysis( | |
name="buffalo_l", root=str(MODELS_DIR), providers=["CUDAExecutionProvider"] | |
) | |
face_analyser.prepare(ctx_id=0, det_size=(640, 640)) | |
# 6-5 Real-ESRGAN | |
re_ckpt = dl_hf(REALESRGAN_REPO, REALESRGAN_FILE) | |
upsampler = RealESRGANer( | |
scale=4, | |
model_path=str(re_ckpt), | |
half=True, | |
tile=512, tile_pad=10, pre_pad=0, gpu_id=0 | |
) | |
print("[INIT] Pipelines ready.") | |
############################################################################## | |
# 7. プロンプトテンプレ | |
############################################################################## | |
BASE_PROMPT = ( | |
"(masterpiece:1.2), best quality, ultra-realistic, RAW photo, 8k, " | |
"cinematic lighting, textured skin, " | |
) | |
NEG_PROMPT = ( | |
"verybadimagenegative_v1.3, ng_deepnegative_v1_75t, " | |
"(worst quality:2), (low quality:2), lowres, blurry, bad anatomy, " | |
"bad hands, extra digits, watermark, signature" | |
) | |
############################################################################## | |
# 8. 生成コア(GPU アタッチ) | |
############################################################################## | |
# ZeroGPU で 60 s まで実行可 :contentReference[oaicite:6]{index=6} | |
def generate_core( | |
face_img: Image.Image, | |
subject: str, | |
add_prompt: str = "", | |
add_neg: str = "", | |
cfg: float = 7.5, | |
ip_scale: float = 0.6, | |
steps: int = 30, | |
w: int = 768, | |
h: int = 768, | |
upscale: bool = False, | |
up_factor: int = 4, | |
progress: gr.Progress = gr.Progress(track_tqdm=True), | |
): | |
try: | |
if pipe is None: | |
initialize_pipelines() | |
if len(face_analyser.get(np.array(face_img))) == 0: | |
raise ValueError("顔が検出できません。別の画像でお試しください。") | |
pipe.set_adapters(["ip_faceid"], adapter_weights=[ip_scale]) | |
prompt = BASE_PROMPT + subject + ", " + add_prompt | |
negative = NEG_PROMPT + ", " + add_neg | |
result = pipe( | |
prompt=prompt, | |
negative_prompt=negative, | |
num_inference_steps=int(steps), | |
guidance_scale=float(cfg), | |
image=face_img, | |
control_image=None, | |
width=int(w), height=int(h), | |
).images[0] | |
if upscale: | |
upsampler.scale = 4 if up_factor == 4 else 8 | |
result, _ = upsampler.enhance(np.array(result)) | |
result = Image.fromarray(result) | |
return result | |
except Exception as e: | |
traceback.print_exc() | |
raise e | |
############################################################################## | |
# 9. Gradio UI | |
############################################################################## | |
with gr.Blocks(title="InstantID × BRA v7 (ZeroGPU)") as demo: | |
gr.Markdown("## InstantID × Beautiful Realistic Asians v7") | |
with gr.Row(): | |
face_img = gr.Image(type="pil", label="Face ID", sources=["upload"]) | |
subject = gr.Textbox(label="被写体説明(例: 30代日本人女性、黒髪セミロング)", interactive=True) | |
add_prompt = gr.Textbox(label="追加プロンプト", interactive=True) | |
add_neg = gr.Textbox(label="追加ネガティブ", interactive=True) | |
with gr.Row(): | |
cfg = gr.Slider(1, 20, value=7.5, step=0.5, label="CFG Scale") | |
ip_scale = gr.Slider(0.1, 1.0, value=0.6, step=0.05, label="IP-Adapter Weight") | |
with gr.Row(): | |
steps = gr.Slider(10, 50, value=30, step=1, label="Steps") | |
w = gr.Slider(512, 1024, value=768, step=64, label="Width") | |
h = gr.Slider(512, 1024, value=768, step=64, label="Height") | |
with gr.Row(): | |
upscale = gr.Checkbox(label="Real-ESRGAN Upscale", value=False) | |
up_factor = gr.Radio([4, 8], value=4, label="Upscale Factor") | |
run_btn = gr.Button("Generate") | |
output_im = gr.Image(type="pil", label="Result") | |
run_btn.click( | |
fn=generate_core, | |
inputs=[face_img, subject, add_prompt, add_neg, | |
cfg, ip_scale, steps, w, h, upscale, up_factor], | |
outputs=output_im, show_progress=True | |
) | |
############################################################################## | |
# 10. FastAPI REST | |
############################################################################## | |
app = FastAPI() | |
async def api_generate( | |
subject: str = Form(...), | |
cfg: float = Form(7.5), | |
steps: int = Form(30), | |
ip_scale: float = Form(0.6), | |
w: int = Form(768), | |
h: int = Form(768), | |
file: UploadFile = File(...), | |
): | |
try: | |
img = Image.open(io.BytesIO(await file.read())).convert("RGB") # noqa | |
res = generate_core(img, subject, "", "", cfg, ip_scale, steps, w, h, False, 4) | |
buf = io.BytesIO(); res.save(buf, format="PNG") | |
return {"image": "data:image/png;base64," + base64.b64encode(buf.getvalue()).decode()} | |
except Exception as e: | |
traceback.print_exc() | |
raise HTTPException(status_code=500, detail=str(e)) | |
############################################################################## | |
# 11. Launch(Gradio が自動で Uvicorn を起動) | |
############################################################################## | |
demo.queue(default_concurrency_limit=2).launch(share=False) # :contentReference[oaicite:7]{index=7} | |