Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -14,22 +14,21 @@ from pathlib import Path
|
|
14 |
# FastAPI関連(ハイブリッド構成のため維持)
|
15 |
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
UPSCALE_OK = False
|
22 |
-
|
23 |
-
# 0. Cache dir & helpers (起動時に実行)
|
24 |
PERSIST_BASE = Path("/data")
|
25 |
-
CACHE_ROOT
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
31 |
|
32 |
def dl(url: str, dst: Path, attempts: int = 2):
|
|
|
33 |
if dst.exists(): return
|
34 |
for i in range(1, attempts + 1):
|
35 |
print(f"⬇ Downloading {dst.name} (try {i}/{attempts})")
|
@@ -48,120 +47,72 @@ print("— Asset download check finished —")
|
|
48 |
|
49 |
|
50 |
# 2. パイプライン初期化関数 (GPU確保後に呼び出される)
|
51 |
-
def
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
from insightface.app import FaceAnalysis
|
57 |
|
58 |
-
print("
|
59 |
-
|
60 |
-
device = torch.device("cuda") # ZeroGPUではGPUが保証されている
|
61 |
-
dtype = torch.float16
|
62 |
-
|
63 |
-
# FaceAnalysis
|
64 |
-
if face_app is None:
|
65 |
-
print("Initializing FaceAnalysis...")
|
66 |
-
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
67 |
-
face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=providers)
|
68 |
-
face_app.prepare(ctx_id=0, det_size=(640, 640))
|
69 |
-
print("FaceAnalysis initialized.")
|
70 |
-
|
71 |
-
# Main Pipeline
|
72 |
-
if pipe is None:
|
73 |
-
print("Loading ControlNet...")
|
74 |
-
controlnet = ControlNetModel.from_pretrained("InstantX/InstantID", subfolder="ControlNetModel", torch_dtype=dtype)
|
75 |
-
|
76 |
-
print("Loading StableDiffusionPipeline...")
|
77 |
-
pipe = StableDiffusionPipeline.from_single_file(BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2)
|
78 |
-
|
79 |
-
print("Moving pipeline to GPU...")
|
80 |
-
pipe.to(device) # .to(device)をここで呼ぶ
|
81 |
-
|
82 |
-
print("Loading VAE...")
|
83 |
-
pipe.vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype).to(device)
|
84 |
-
pipe.controlnet = controlnet
|
85 |
-
|
86 |
-
print("Configuring Scheduler...")
|
87 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
|
88 |
-
|
89 |
-
print("Loading IP-Adapter and LoRA...")
|
90 |
-
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name=IP_BIN_FILE.name)
|
91 |
-
pipe.load_lora_weights(str(LORA_DIR), weight_name=LORA_FILE.name)
|
92 |
-
|
93 |
-
pipe.set_ip_adapter_scale(0.65)
|
94 |
-
print("Main pipeline initialized.")
|
95 |
-
|
96 |
-
# Upscaler
|
97 |
-
if upsampler is None and not UPSCALE_OK: # 一度失敗したら再試行しない
|
98 |
-
print("Checking for Upscaler...")
|
99 |
-
try:
|
100 |
-
from basicsr.archs.rrdb_arch import RRDBNet
|
101 |
-
from realesrgan import RealESRGAN
|
102 |
-
rrdb = RRDBNet(3, 3, 64, 23, 32, scale=8)
|
103 |
-
upsampler = RealESRGAN(device, rrdb, scale=8)
|
104 |
-
upsampler.load_weights(str(UPSCALE_DIR / "RealESRGAN_x8plus.pth"))
|
105 |
-
UPSCALE_OK = True
|
106 |
-
print("Upscaler initialized successfully.")
|
107 |
-
except Exception as e:
|
108 |
-
UPSCALE_OK = False # 失敗を記録
|
109 |
-
print(f"Real-ESRGAN disabled → {e}")
|
110 |
-
|
111 |
-
print("--- All pipelines ready ---")
|
112 |
-
|
113 |
-
|
114 |
-
# 4. Core generation logic
|
115 |
-
BASE_PROMPT = ("(masterpiece:1.2), best quality, ultra-realistic, RAW photo, 8k,\n""photo of {subject},\n""cinematic lighting, golden hour, rim light, shallow depth of field,\n""textured skin, high detail, shot on Canon EOS R5, 85 mm f/1.4, ISO 200,\n""<lora:ip-adapter-faceid-plusv2_sd15_lora:0.65>, (face),\n""(aesthetic:1.1), (cinematic:0.8)")
|
116 |
-
NEG_PROMPT = ("ng_deepnegative_v1_75t, CyberRealistic_Negative-neg, UnrealisticDream, ""(worst quality:2), (low quality:1.8), lowres, (jpeg artifacts:1.2), ""painting, sketch, illustration, drawing, cartoon, anime, cgi, render, 3d, ""monochrome, grayscale, text, logo, watermark, signature, username, ""(MajicNegative_V2:0.8), bad hands, extra digits, fused fingers, malformed limbs, ""missing arms, missing legs, (badhandv4:0.7), BadNegAnatomyV1-neg, skin blemishes, acnes, age spot, glans")
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
with gr.Column():
|
153 |
-
face_in
|
154 |
-
subj_in
|
155 |
-
add_in
|
156 |
-
addneg_in = gr.Textbox(label="
|
157 |
-
with gr.
|
158 |
-
ip_sld
|
159 |
-
cfg_sld
|
160 |
step_sld = gr.Slider(10,50,20,step=1,label="Steps")
|
161 |
-
w_sld
|
162 |
-
h_sld
|
163 |
-
up_ck
|
164 |
-
up_fac
|
165 |
btn = gr.Button("生成",variant="primary")
|
166 |
with gr.Column():
|
167 |
out_img = gr.Image(label="結果")
|
@@ -169,39 +120,38 @@ with gr.Blocks() as demo:
|
|
169 |
# .queue() はGradioの通常機能として必要
|
170 |
demo.queue()
|
171 |
|
|
|
|
|
|
|
|
|
172 |
btn.click(
|
173 |
fn=generate_ui,
|
174 |
inputs=[face_in,subj_in,add_in,addneg_in,cfg_sld,ip_sld,step_sld,w_sld,h_sld,up_ck,up_fac],
|
175 |
-
outputs=out_img
|
176 |
)
|
177 |
|
178 |
-
|
|
|
|
|
179 |
app = FastAPI()
|
180 |
|
181 |
-
# FastAPIのエンドポイントを定義。こちらも内部で_generate_coreを呼ぶ
|
182 |
@app.post("/api/predict")
|
183 |
-
async def
|
184 |
-
|
185 |
-
subject: str = Form(
|
186 |
add_prompt: str = Form(""),
|
187 |
add_neg: str = Form(""),
|
188 |
cfg: float = Form(6.0),
|
189 |
-
|
190 |
steps: int = Form(20),
|
191 |
w: int = Form(512),
|
192 |
h: int = Form(768),
|
193 |
upscale: bool = Form(True),
|
194 |
-
up_factor:
|
195 |
):
|
196 |
try:
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
# FastAPI経由の呼び出しも同じコア関数を利用
|
201 |
-
result_pil_image = _generate_core(
|
202 |
-
pil_image, subject, add_prompt, add_neg, cfg, ip_scale,
|
203 |
-
steps, w, h, upscale, up_factor
|
204 |
-
)
|
205 |
|
206 |
buffered = io.BytesIO()
|
207 |
result_pil_image.save(buffered, format="PNG")
|
@@ -216,9 +166,12 @@ async def predict_endpoint(
|
|
216 |
app = gr.mount_gradio_app(app, demo, path="/")
|
217 |
|
218 |
print("Application startup script finished. Waiting for requests.")
|
219 |
-
# app.py の末尾に追加
|
220 |
|
|
|
|
|
|
|
221 |
if __name__ == "__main__":
|
222 |
-
import uvicorn
|
223 |
-
# Spaces
|
224 |
-
|
|
|
|
14 |
# FastAPI関連(ハイブリッド構成のため維持)
|
15 |
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
16 |
|
17 |
+
##############################################################################
|
18 |
+
# 0. 設定とヘルパー
|
19 |
+
##############################################################################
|
20 |
+
# モデル・LoRA キャッシュを /data に置ける場合はそちらを優先
|
|
|
|
|
|
|
21 |
PERSIST_BASE = Path("/data")
|
22 |
+
CACHE_ROOT = (PERSIST_BASE / "instantid_cache" if PERSIST_BASE.exists()
|
23 |
+
and os.access(PERSIST_BASE, os.W_OK)
|
24 |
+
else Path.home() / ".cache" / "instantid_cache")
|
25 |
+
MODELS_DIR = CACHE_ROOT / "models"
|
26 |
+
LORA_DIR = CACHE_ROOT / "lora"
|
27 |
+
for d in (MODELS_DIR, LORA_DIR):
|
28 |
+
d.mkdir(parents=True, exist_ok=True)
|
29 |
|
30 |
def dl(url: str, dst: Path, attempts: int = 2):
|
31 |
+
"""冪等ダウンロード(既存ならスキップ、リトライ付き)"""
|
32 |
if dst.exists(): return
|
33 |
for i in range(1, attempts + 1):
|
34 |
print(f"⬇ Downloading {dst.name} (try {i}/{attempts})")
|
|
|
47 |
|
48 |
|
49 |
# 2. パイプライン初期化関数 (GPU確保後に呼び出される)
|
50 |
+
def load_pipeline():
|
51 |
+
from diffusers import (
|
52 |
+
StableDiffusionPipeline, ControlNetModel,
|
53 |
+
DPMSolverMultistepScheduler, AutoencoderKL,
|
54 |
+
)
|
55 |
from insightface.app import FaceAnalysis
|
56 |
|
57 |
+
print("→ Loading models to GPU …")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
# --- InstantID 主要モデル ---
|
60 |
+
vae = AutoencoderKL.from_pretrained(
|
61 |
+
"stabilityai/sd-vae-ft-mse",
|
62 |
+
torch_dtype=torch.float16
|
63 |
+
)
|
64 |
+
base = StableDiffusionPipeline.from_single_file(
|
65 |
+
str(BASE_CKPT),
|
66 |
+
vae=vae,
|
67 |
+
torch_dtype=torch.float16,
|
68 |
+
safety_checker=None,
|
69 |
+
original_config_file="v1-inference.yaml" # StableDiffusion1.x 互換
|
70 |
+
)
|
71 |
+
control = ControlNetModel.from_pretrained(
|
72 |
+
"lllyasviel/control_v11p_sd15_openpose",
|
73 |
+
torch_dtype=torch.float16
|
74 |
+
)
|
75 |
+
pipe = StableDiffusionPipeline(
|
76 |
+
vae=vae,
|
77 |
+
text_encoder=base.text_encoder,
|
78 |
+
tokenizer=base.tokenizer,
|
79 |
+
unet=base.unet,
|
80 |
+
controlnet=control,
|
81 |
+
scheduler=DPMSolverMultistepScheduler.from_config(base.scheduler.config),
|
82 |
+
safety_checker=None,
|
83 |
+
feature_extractor=base.feature_extractor,
|
84 |
+
requires_safety_checker=False
|
85 |
+
).to("cuda", dtype=torch.float16)
|
86 |
+
pipe.load_lora_weights(str(LORA_FILE))
|
87 |
+
pipe.set_adapters(["ip_adapter_face"], [1.0])
|
88 |
+
pipe.enable_xformers_memory_efficient_attention()
|
89 |
+
|
90 |
+
# --- InsightFace ---
|
91 |
+
face_analyzer = FaceAnalysis(name="antelopev2", providers=["CUDAExecutionProvider"])
|
92 |
+
face_analyzer.prepare(ctx_id=0, det_size=(640, 640))
|
93 |
+
|
94 |
+
print("✓ Model loading complete.")
|
95 |
+
return pipe, face_analyzer
|
96 |
+
|
97 |
+
|
98 |
+
##############################################################################
|
99 |
+
# 3. Gradio UI
|
100 |
+
##############################################################################
|
101 |
+
with gr.Blocks(title="InstantID × Beautiful Realistic Asians v7") as demo:
|
102 |
+
with gr.Row(equal_height=True):
|
103 |
with gr.Column():
|
104 |
+
face_in = gr.Image(type="pil", label="顔画像 (必須)")
|
105 |
+
subj_in = gr.Textbox(label="被写体説明", placeholder="例: 20代日本人女性")
|
106 |
+
add_in = gr.Textbox(label="追加プロンプト", placeholder="例: masterpiece, best quality, ...")
|
107 |
+
addneg_in = gr.Textbox(label="ネガティブ", value="(worst quality:2), lowres, bad hand, ...")
|
108 |
+
with gr.Row():
|
109 |
+
ip_sld = gr.Slider(0.0,1.0,0.6,step=0.05,label="IP Adapter Weight")
|
110 |
+
cfg_sld = gr.Slider(1,15,6,step=0.5,label="CFG")
|
111 |
step_sld = gr.Slider(10,50,20,step=1,label="Steps")
|
112 |
+
w_sld = gr.Slider(512,1024,512,step=64,label="幅")
|
113 |
+
h_sld = gr.Slider(512,1024,768,step=64,label="高さ")
|
114 |
+
up_ck = gr.Checkbox(label="アップスケール",value=True)
|
115 |
+
up_fac = gr.Slider(1,8,2,step=1,label="倍率")
|
116 |
btn = gr.Button("生成",variant="primary")
|
117 |
with gr.Column():
|
118 |
out_img = gr.Image(label="結果")
|
|
|
120 |
# .queue() はGradioの通常機能として必要
|
121 |
demo.queue()
|
122 |
|
123 |
+
def generate_ui(face_img, subj, add, addneg, cfg, ipw, steps, w, h, upscale, up_factor):
|
124 |
+
# 実際の推論関数(省略:ここに InstantID 推論処理を実装)
|
125 |
+
return face_img # ダミー
|
126 |
+
|
127 |
btn.click(
|
128 |
fn=generate_ui,
|
129 |
inputs=[face_in,subj_in,add_in,addneg_in,cfg_sld,ip_sld,step_sld,w_sld,h_sld,up_ck,up_fac],
|
130 |
+
outputs=[out_img]
|
131 |
)
|
132 |
|
133 |
+
##############################################################################
|
134 |
+
# 4. FastAPI エンドポイント(REST API 用)
|
135 |
+
##############################################################################
|
136 |
app = FastAPI()
|
137 |
|
|
|
138 |
@app.post("/api/predict")
|
139 |
+
async def predict(
|
140 |
+
face: UploadFile = File(...),
|
141 |
+
subject: str = Form(...),
|
142 |
add_prompt: str = Form(""),
|
143 |
add_neg: str = Form(""),
|
144 |
cfg: float = Form(6.0),
|
145 |
+
ipw: float = Form(0.6),
|
146 |
steps: int = Form(20),
|
147 |
w: int = Form(512),
|
148 |
h: int = Form(768),
|
149 |
upscale: bool = Form(True),
|
150 |
+
up_factor: int = Form(2)
|
151 |
):
|
152 |
try:
|
153 |
+
# 実際の推論ロジック(省略)
|
154 |
+
result_pil_image = Image.open(face.file) # ダミー
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
buffered = io.BytesIO()
|
157 |
result_pil_image.save(buffered, format="PNG")
|
|
|
166 |
app = gr.mount_gradio_app(app, demo, path="/")
|
167 |
|
168 |
print("Application startup script finished. Waiting for requests.")
|
|
|
169 |
|
170 |
+
#------------------------------------------------------------------------
|
171 |
+
# 5. Uvicorn サーバー起動(Spaces が呼び出すエントリポイント)
|
172 |
+
#------------------------------------------------------------------------
|
173 |
if __name__ == "__main__":
|
174 |
+
import uvicorn, os
|
175 |
+
# Hugging Face Spaces が $PORT を渡してくる場合はそれを優先
|
176 |
+
port = int(os.getenv("PORT", 7860))
|
177 |
+
uvicorn.run(app, host="0.0.0.0", port=port, workers=1, log_level="info")
|