Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# app.py — ZeroGPU
|
2 |
import gradio as gr
|
3 |
import spaces
|
4 |
import torch
|
@@ -10,14 +10,11 @@ import traceback
|
|
10 |
import base64
|
11 |
import io
|
12 |
from pathlib import Path
|
13 |
-
|
14 |
-
# FastAPI関連(ハイブリッド構成のため維持)
|
15 |
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
16 |
|
17 |
##############################################################################
|
18 |
# 0. 設定とヘルパー
|
19 |
##############################################################################
|
20 |
-
# モデル・LoRA キャッシュを /data に置ける場合はそちらを優先
|
21 |
PERSIST_BASE = Path("/data")
|
22 |
CACHE_ROOT = (PERSIST_BASE / "instantid_cache" if PERSIST_BASE.exists()
|
23 |
and os.access(PERSIST_BASE, os.W_OK)
|
@@ -28,14 +25,15 @@ for d in (MODELS_DIR, LORA_DIR):
|
|
28 |
d.mkdir(parents=True, exist_ok=True)
|
29 |
|
30 |
def dl(url: str, dst: Path, attempts: int = 2):
|
31 |
-
"""
|
32 |
-
if dst.exists():
|
|
|
33 |
for i in range(1, attempts + 1):
|
34 |
print(f"⬇ Downloading {dst.name} (try {i}/{attempts})")
|
35 |
-
if subprocess.call(["wget", "-q", "-O", str(dst), url]) == 0:
|
|
|
36 |
raise RuntimeError(f"download failed → {url}")
|
37 |
|
38 |
-
# 1. Asset download (起動時に実行)
|
39 |
print("— Starting asset download check —")
|
40 |
BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors"
|
41 |
dl("https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=pruned&fp=fp16", BASE_CKPT)
|
@@ -45,58 +43,8 @@ LORA_FILE = LORA_DIR / "ip-adapter-faceid-plusv2_sd15_lora.safetensors"
|
|
45 |
dl("https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors", LORA_FILE)
|
46 |
print("— Asset download check finished —")
|
47 |
|
48 |
-
|
49 |
-
# 2. パイプライン初期化関数 (GPU確保後に呼び出される)
|
50 |
-
def load_pipeline():
|
51 |
-
from diffusers import (
|
52 |
-
StableDiffusionPipeline, ControlNetModel,
|
53 |
-
DPMSolverMultistepScheduler, AutoencoderKL,
|
54 |
-
)
|
55 |
-
from insightface.app import FaceAnalysis
|
56 |
-
|
57 |
-
print("→ Loading models to GPU …")
|
58 |
-
|
59 |
-
# --- InstantID 主要モデル ---
|
60 |
-
vae = AutoencoderKL.from_pretrained(
|
61 |
-
"stabilityai/sd-vae-ft-mse",
|
62 |
-
torch_dtype=torch.float16
|
63 |
-
)
|
64 |
-
base = StableDiffusionPipeline.from_single_file(
|
65 |
-
str(BASE_CKPT),
|
66 |
-
vae=vae,
|
67 |
-
torch_dtype=torch.float16,
|
68 |
-
safety_checker=None,
|
69 |
-
original_config_file="v1-inference.yaml" # StableDiffusion1.x 互換
|
70 |
-
)
|
71 |
-
control = ControlNetModel.from_pretrained(
|
72 |
-
"lllyasviel/control_v11p_sd15_openpose",
|
73 |
-
torch_dtype=torch.float16
|
74 |
-
)
|
75 |
-
pipe = StableDiffusionPipeline(
|
76 |
-
vae=vae,
|
77 |
-
text_encoder=base.text_encoder,
|
78 |
-
tokenizer=base.tokenizer,
|
79 |
-
unet=base.unet,
|
80 |
-
controlnet=control,
|
81 |
-
scheduler=DPMSolverMultistepScheduler.from_config(base.scheduler.config),
|
82 |
-
safety_checker=None,
|
83 |
-
feature_extractor=base.feature_extractor,
|
84 |
-
requires_safety_checker=False
|
85 |
-
).to("cuda", dtype=torch.float16)
|
86 |
-
pipe.load_lora_weights(str(LORA_FILE))
|
87 |
-
pipe.set_adapters(["ip_adapter_face"], [1.0])
|
88 |
-
pipe.enable_xformers_memory_efficient_attention()
|
89 |
-
|
90 |
-
# --- InsightFace ---
|
91 |
-
face_analyzer = FaceAnalysis(name="antelopev2", providers=["CUDAExecutionProvider"])
|
92 |
-
face_analyzer.prepare(ctx_id=0, det_size=(640, 640))
|
93 |
-
|
94 |
-
print("✓ Model loading complete.")
|
95 |
-
return pipe, face_analyzer
|
96 |
-
|
97 |
-
|
98 |
##############################################################################
|
99 |
-
#
|
100 |
##############################################################################
|
101 |
with gr.Blocks(title="InstantID × Beautiful Realistic Asians v7") as demo:
|
102 |
with gr.Row(equal_height=True):
|
@@ -116,62 +64,49 @@ with gr.Blocks(title="InstantID × Beautiful Realistic Asians v7") as demo:
|
|
116 |
btn = gr.Button("生成",variant="primary")
|
117 |
with gr.Column():
|
118 |
out_img = gr.Image(label="結果")
|
119 |
-
|
120 |
-
# .queue() はGradioの通常機能として必要
|
121 |
demo.queue()
|
122 |
-
|
123 |
-
def generate_ui(face_img, subj, add, addneg, cfg, ipw, steps, w, h, upscale, up_factor):
|
124 |
-
# 実際の推論関数(省略:ここに InstantID 推論処理を実装)
|
125 |
-
return face_img # ダミー
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
132 |
|
133 |
##############################################################################
|
134 |
-
#
|
135 |
##############################################################################
|
136 |
app = FastAPI()
|
137 |
|
138 |
@app.post("/api/predict")
|
139 |
-
async def predict(
|
140 |
-
face: UploadFile = File(...),
|
141 |
-
subject: str = Form(...),
|
142 |
-
add_prompt: str = Form(""),
|
143 |
-
add_neg: str = Form(""),
|
144 |
-
cfg: float = Form(6.0),
|
145 |
-
ipw: float = Form(0.6),
|
146 |
-
steps: int = Form(20),
|
147 |
-
w: int = Form(512),
|
148 |
-
h: int = Form(768),
|
149 |
-
upscale: bool = Form(True),
|
150 |
-
up_factor: int = Form(2)
|
151 |
-
):
|
152 |
try:
|
153 |
-
|
154 |
-
result_pil_image = Image.open(face.file) # ダミー
|
155 |
-
|
156 |
buffered = io.BytesIO()
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
return {"image_base64": img_str}
|
161 |
except Exception as e:
|
162 |
traceback.print_exc()
|
163 |
raise HTTPException(status_code=500, detail=str(e))
|
164 |
|
165 |
-
# Gradio
|
166 |
app = gr.mount_gradio_app(app, demo, path="/")
|
167 |
|
168 |
print("Application startup script finished. Waiting for requests.")
|
169 |
|
170 |
-
|
171 |
-
#
|
172 |
-
|
173 |
if __name__ == "__main__":
|
174 |
-
import uvicorn
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py — ZeroGPU対応 + ポート自動フォールバック
|
2 |
import gradio as gr
|
3 |
import spaces
|
4 |
import torch
|
|
|
10 |
import base64
|
11 |
import io
|
12 |
from pathlib import Path
|
|
|
|
|
13 |
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
14 |
|
15 |
##############################################################################
|
16 |
# 0. 設定とヘルパー
|
17 |
##############################################################################
|
|
|
18 |
PERSIST_BASE = Path("/data")
|
19 |
CACHE_ROOT = (PERSIST_BASE / "instantid_cache" if PERSIST_BASE.exists()
|
20 |
and os.access(PERSIST_BASE, os.W_OK)
|
|
|
25 |
d.mkdir(parents=True, exist_ok=True)
|
26 |
|
27 |
def dl(url: str, dst: Path, attempts: int = 2):
|
28 |
+
"""冪等ダウンロード(既にあればスキップ、リトライ付き)"""
|
29 |
+
if dst.exists():
|
30 |
+
return
|
31 |
for i in range(1, attempts + 1):
|
32 |
print(f"⬇ Downloading {dst.name} (try {i}/{attempts})")
|
33 |
+
if subprocess.call(["wget", "-q", "-O", str(dst), url]) == 0:
|
34 |
+
return
|
35 |
raise RuntimeError(f"download failed → {url}")
|
36 |
|
|
|
37 |
print("— Starting asset download check —")
|
38 |
BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors"
|
39 |
dl("https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=pruned&fp=fp16", BASE_CKPT)
|
|
|
43 |
dl("https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors", LORA_FILE)
|
44 |
print("— Asset download check finished —")
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
##############################################################################
|
47 |
+
# 1. Gradio UI
|
48 |
##############################################################################
|
49 |
with gr.Blocks(title="InstantID × Beautiful Realistic Asians v7") as demo:
|
50 |
with gr.Row(equal_height=True):
|
|
|
64 |
btn = gr.Button("生成",variant="primary")
|
65 |
with gr.Column():
|
66 |
out_img = gr.Image(label="結果")
|
|
|
|
|
67 |
demo.queue()
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
# ダミー推論(実装は省略)
|
70 |
+
def generate_ui(*args, **kwargs):
|
71 |
+
return Image.new("RGB", (512,768), (127,127,127))
|
72 |
+
btn.click(generate_ui,
|
73 |
+
inputs=[face_in,subj_in,add_in,addneg_in,cfg_sld,ip_sld,step_sld,
|
74 |
+
w_sld,h_sld,up_ck,up_fac],
|
75 |
+
outputs=[out_img])
|
76 |
|
77 |
##############################################################################
|
78 |
+
# 2. FastAPI ラッパー(REST API)
|
79 |
##############################################################################
|
80 |
app = FastAPI()
|
81 |
|
82 |
@app.post("/api/predict")
|
83 |
+
async def predict(face: UploadFile = File(...)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
try:
|
85 |
+
img = Image.open(face.file)
|
|
|
|
|
86 |
buffered = io.BytesIO()
|
87 |
+
img.save(buffered, format="PNG")
|
88 |
+
img_b64 = base64.b64encode(buffered.getvalue()).decode()
|
89 |
+
return {"image_base64": img_b64}
|
|
|
90 |
except Exception as e:
|
91 |
traceback.print_exc()
|
92 |
raise HTTPException(status_code=500, detail=str(e))
|
93 |
|
94 |
+
# Gradio を FastAPI にマウント
|
95 |
app = gr.mount_gradio_app(app, demo, path="/")
|
96 |
|
97 |
print("Application startup script finished. Waiting for requests.")
|
98 |
|
99 |
+
##############################################################################
|
100 |
+
# 3. Uvicorn 起動(ポート重複時フォールバック)
|
101 |
+
##############################################################################
|
102 |
if __name__ == "__main__":
|
103 |
+
import uvicorn
|
104 |
+
port_env = int(os.getenv("PORT", "7860"))
|
105 |
+
try:
|
106 |
+
uvicorn.run(app, host="0.0.0.0", port=port_env, workers=1, log_level="info")
|
107 |
+
except OSError as e:
|
108 |
+
if e.errno == 98 and port_env != 7860:
|
109 |
+
print(f"⚠️ Port {port_env} busy → falling back to 7860")
|
110 |
+
uvicorn.run(app, host="0.0.0.0", port=7860, workers=1, log_level="info")
|
111 |
+
else:
|
112 |
+
raise
|