File size: 6,398 Bytes
73b7e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8123181
 
 
 
73b7e8f
d32a988
 
 
 
73b7e8f
 
 
 
 
 
 
 
c9fb296
8123181
9ae281c
c9fb296
 
 
73b7e8f
 
 
 
 
 
1abc445
 
 
 
518f89c
1abc445
 
73b7e8f
 
 
 
 
 
 
2fa565c
 
 
 
 
cca19e3
2fa565c
a9130a4
2fa565c
a9130a4
 
 
 
 
 
 
73b7e8f
 
eb1e08d
73b7e8f
 
 
 
5fb2da7
 
73b7e8f
 
f217a84
 
 
 
 
73b7e8f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#import atexit
import gradio as gr
#from langchain.document_loaders import UnstructuredPDFLoader
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
#from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Pinecone
import pinecone
import requests
import sys
#from langchain.prompts.chat import (ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate)
from langchain.chains.question_answering import load_qa_chain
#from langchain.chains import RetrievalQA
from langchain import PromptTemplate
from langchain import HuggingFaceHub
from PyPDF2 import PdfReader
#from langchain.document_loaders import TextLoader
#from sentence_transformers.util import semantic_search
from pathlib import Path
from time import sleep
#import pandas as pd
#import torch
import os
import random
import string
from dotenv import load_dotenv
load_dotenv()

file_path = os.path.join(os.getcwd(), "valuation.pdf")
#loader = PyPDFLoader("60LEADERSONAI.pdf")
#loader = PyPDFLoader(file_path)
#data = loader.load()
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
#db_texts = text_splitter.split_documents(data)

data = PdfReader(file_path)
raw_text = ''
db_texts=''
for i, page in enumerate(data.pages):
    text = page.extract_text()
    if text:
        raw_text += text
        text_splitter = RecursiveCharacterTextSplitter(        
#            separator = "\n",
            chunk_size = 1000,
            chunk_overlap  = 100, #striding over the text
            length_function = len,
        )
        db_texts = text_splitter.split_text(raw_text)

class HFEmbeddings:
    def __init__(self, api_url, headers):
        self.api_url = api_url
        self.headers = headers

    def get_embeddings(self, texts):
        response = requests.post(self.api_url, headers=self.headers, json={"inputs": texts, "options": {"wait_for_model": True}})
        embeddings = response.json()
        return embeddings

    def embed_documents(self, texts):
        embeddings = self.get_embeddings(texts)
        return embeddings

    def __call__(self, texts):
        return self.embed_documents(texts)

HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
model_id = os.getenv('model_id')
hf_token = os.getenv('hf_token')
repo_id = os.getenv('repo_id')

api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_id}"
headers = {"Authorization": f"Bearer {hf_token}"}

hf_embeddings = HFEmbeddings(api_url, headers)

PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
PINECONE_ENVIRONMENT = os.getenv('PINECONE_ENVIRONMENT')
PINECONE_INDEX_NAME = os.getenv('PINECONE_INDEX_NAME')
print(PINECONE_INDEX_NAME)

def generate_random_string(length):
    letters = string.ascii_lowercase
    return ''.join(random.choice(letters) for i in range(length))      
random_string = generate_random_string(10)

#def exit_handler():
#    pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT)
#    index_namespace_to_delete = pinecone.Index(index_name=index_name)
#    index_namespace_to_delete.delete(delete_all=True, namespace=namespace)
#atexit.register(exit_handler)

pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT)
index_name = PINECONE_INDEX_NAME
#index_name = pinecone.Index(index_name)
print(index_name)
namespace = random_string
print(namespace)

vector_db = Pinecone.from_texts(db_texts, hf_embeddings, index_name=index_name, namespace=namespace)
#vector_db = Pinecone.from_texts([t.page_content for t in db_texts], hf_embeddings, index_name=index_name, namespace=namespace)
#docsearch = Pinecone.from_texts([t.page_content for t in texts], embeddings, index_name=index_name, namespace=namespace)
print("***********************************")
print("Pinecone Vector/Embedding DB Ready.")

index_name_extracted=pinecone.list_indexes()
print(index_name_extracted)

index_current = pinecone.Index(index_name=index_name)
index_status=index_current.describe_index_stats() 
print(index_status)

llm = HuggingFaceHub(repo_id=repo_id,
                     model_kwargs={"min_length":100,
                                   "max_new_tokens":1024, "do_sample":True,
                                   "temperature":0.1,
                                   "top_k":50,
                                   "top_p":0.95, "eos_token_id":49155})

#prompt_template = """You are a very helpful AI assistant. Please ONLY use {context} to answer the user's input question. If you don't know the answer, just say that you don't know. DON'T try to make up an answer and do NOT go beyond the given context without the user's explicitly asking you to do so!
#Question: {question}
#Helpful AI Repsonse:
#"""

prompt_template = """You are a very helpful AI assistant. Please ONLY use the givens context to answer the user's input question. If you don't know the answer, just say that you don't know.
Context: {context}
Question: {question}
Helpful AI Repsonse:
"""

PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])

chain = load_qa_chain(llm=llm, chain_type="stuff", prompt=PROMPT)

#chain = load_qa_chain(llm=llm, chain_type="stuff")

def run_chain(user_query):
    pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT)
    if user_query !="" and not user_query.strip().isspace() and not user_query.isspace():
      print("Your query:\n"+user_query)
      vector_db_from_index = Pinecone.from_existing_index(index_name, hf_embeddings, namespace=namespace)
      ss_results = vector_db_from_index.similarity_search(query=user_query, namespace=namespace, k=5)
      initial_ai_response = chain.run(input_documents=ss_results, question=user_query, return_only_outputs=True)        
      #initial_ai_response=chain({"input_documents": ss_results, "question": user_query}, return_only_outputs=True)            
      temp_ai_response = initial_ai_response.partition('<|end|>')[0]
      final_ai_response = temp_ai_response.replace('\n', '')
      print(final_ai_response)
      print(index_status)
      print(index_name_extracted)
      print(namespace) 
      print("****************")
      return final_ai_response
    else:
      print("Invalid inputs.")  

iface = gr.Interface(fn=run_chain, inputs="text", outputs="text", title="AI Response")
iface.launch()