File size: 8,766 Bytes
4b9b315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import pandas as pd
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import seaborn as sns

# Check for missing values
#Loading Data
data = pd.read_csv('Cardio_Vascular_Disease_by_Gut_Microbiota.csv')
print(data.head())

from sklearn.ensemble import RandomForestClassifier

# Define features and target
X = data.drop(columns=['patient_id', 'CVD_Status'])
y = data['CVD_Status']

# Train a RandomForest model
rf = RandomForestClassifier(random_state=42)
rf.fit(X, y)

# Feature importances
importances = rf.feature_importances_

# Plot feature importances
feature_importance_df = pd.DataFrame({'Feature': X.columns, 'Importance': importances})
feature_importance_df = feature_importance_df.sort_values('Importance', ascending=False)

plt.figure(figsize=(10,6))
sns.barplot(x='Importance', y='Feature', data=feature_importance_df)
plt.title('Feature Importance from Random Forest')
plt.show()

from sklearn.ensemble import GradientBoostingClassifier
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.metrics import accuracy_score, confusion_matrix, r2_score, mean_squared_error, mean_absolute_error
from math import sqrt

# Initialize the models
gradient_boosting = GradientBoostingClassifier(random_state=42)

# Split into training and testing sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train and evaluate Gradient Boosting
gradient_boosting.fit(X_train, y_train)
y_pred_gb = gradient_boosting.predict(X_test)
accuracy_gb = accuracy_score(y_test, y_pred_gb)
conf_matrix_gb = confusion_matrix(y_test, y_pred_gb)

# Print results
print(f"Gradient Boosting Accuracy: {accuracy_gb * 100:.2f}%")
print(f"Confusion Matrix:\n {conf_matrix_gb}\n")

# Predict probabilities
y_pred_prob_gb = gradient_boosting.predict_proba(X_test)[:, 1] 

# Predict class labels
y_pred_gb = gradient_boosting.predict(X_test)

# Calculate R² Score, RMSE, MSE, and MAE for Gradient Boosting
r2_gb = r2_score(y_test, y_pred_prob_gb)
rmse_gb = sqrt(mean_squared_error(y_test, y_pred_prob_gb))
mse_gb = mean_squared_error(y_test, y_pred_prob_gb)
mae_gb = mean_absolute_error(y_test, y_pred_prob_gb)

# Print Accuracy, R², RMSE, MSE, and MAE for Gradient Boosting
print(f"Gradient Boosting Accuracy: {accuracy_gb * 100:.2f}%")
print(f"R² Score: {r2_gb:.4f}, RMSE: {rmse_gb:.4f}, MSE: {mse_gb:.4f}, MAE: {mae_gb:.4f}")
print(f"Confusion Matrix:\n {conf_matrix_gb}\n")

xgboost = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42)


# Train and evaluate XGBoost
xgboost.fit(X_train, y_train)
y_pred_xgb = xgboost.predict(X_test)
accuracy_xgb = accuracy_score(y_test, y_pred_xgb)
conf_matrix_xgb = confusion_matrix(y_test, y_pred_xgb)

print(f"XGBoost Accuracy: {accuracy_xgb * 100:.2f}%")
print(f"Confusion Matrix:\n {conf_matrix_xgb}\n")

y_pred_prob_xgb = xgboost.predict_proba(X_test)[:, 1]

y_pred_xgb = xgboost.predict(X_test)

# Calculate R² Score, RMSE, MSE, and MAE for XGBoost
r2_xgb = r2_score(y_test, y_pred_prob_xgb)
rmse_xgb = sqrt(mean_squared_error(y_test, y_pred_prob_xgb))
mse_xgb = mean_squared_error(y_test, y_pred_prob_xgb)
mae_xgb = mean_absolute_error(y_test, y_pred_prob_xgb)

# Print Accuracy, R², RMSE, MSE, and MAE for XGBoost
print(f"XGBoost Accuracy: {accuracy_xgb * 100:.2f}%")
print(f"R² Score: {r2_xgb:.4f}, RMSE: {rmse_xgb:.4f}, MSE: {mse_xgb:.4f}, MAE: {mae_xgb:.4f}")
print(f"Confusion Matrix:\n {conf_matrix_xgb}\n")

lightgbm = LGBMClassifier(random_state=42)

# Train and evaluate LightGBM
lightgbm.fit(X_train, y_train)
y_pred_lgbm = lightgbm.predict(X_test)
accuracy_lgbm = accuracy_score(y_test, y_pred_lgbm)
conf_matrix_lgbm = confusion_matrix(y_test, y_pred_lgbm)


print(f"LightGBM Accuracy: {accuracy_lgbm * 100:.2f}%")
print(f"Confusion Matrix:\n {conf_matrix_lgbm}\n")

y_pred_prob_lgbm = lightgbm.predict_proba(X_test)[:, 1]

y_pred_lgbm = lightgbm.predict(X_test)

# Calculate R² Score, RMSE, MSE, and MAE for LightGBM
r2_lgbm = r2_score(y_test, y_pred_prob_lgbm)
rmse_lgbm = sqrt(mean_squared_error(y_test, y_pred_prob_lgbm))
mse_lgbm = mean_squared_error(y_test, y_pred_prob_lgbm)
mae_lgbm = mean_absolute_error(y_test, y_pred_prob_lgbm)


# Print Accuracy, R², RMSE, MSE, and MAE for LightGBM
print(f"LightGBM Accuracy: {accuracy_lgbm * 100:.2f}%")
print(f"R² Score: {r2_lgbm:.4f}, RMSE: {rmse_lgbm:.4f}, MSE: {mse_lgbm:.4f}, MAE: {mae_lgbm:.4f}")
print(f"Confusion Matrix:\n {conf_matrix_lgbm}\n")

import joblib

# Assuming you have already trained the model (e.g., GradientBoostingClassifier, XGBoost, etc.)
# Example with a Gradient Boosting model (replace with your trained model)
from sklearn.ensemble import GradientBoostingClassifier

# Assuming you have trained a model
model = GradientBoostingClassifier(random_state=42)
model.fit(X_train, y_train)  # Replace this with your actual training code

# Save the trained model as a .pkl file
joblib.dump(model, 'trained_model.pkl')

print("Model saved successfully as trained_model.pkl")


def predict_cvd(Age, Gender, BMI, Blood_pressure, cholesterol, Bacteroides_fragilis, Faecalibacterium_prausnitzii,
                Akkermansia_muciniphila, Ruminococcus_bromii, Microbiome_Diversity):
    
    # Convert Gender to numerical (assuming Male: 0, Female: 1)
    Gender = 1 if Gender.lower() == 'female' else 0
    
    # Prepare the input data as a dataframe
    input_data = pd.DataFrame({
        'Age': [Age],
        'Gender': [Gender],
        'BMI': [BMI],
        'Blood_pressure': [Blood_pressure],
        'cholesterol': [cholesterol],
        'Bacteroides_fragilis': [Bacteroides_fragilis],
        'Faecalibacterium_prausnitzii': [Faecalibacterium_prausnitzii],
        'Akkermansia_muciniphila': [Akkermansia_muciniphila],
        'Ruminococcus_bromii': [Ruminococcus_bromii],
        'Microbiome_Diversity': [Microbiome_Diversity]
    })

    print(input_data)  # Print the input to debug

    # Predict CVD status (0 or 1)
    prediction = model.predict(input_data)
    
    # Return the result
    return "Cardiovascular Disease Detected" if prediction[0] == 1 else "No Cardiovascular Disease Detected"

import gradio as gr
import pandas as pd
import joblib

# Load the pre-trained model
model = joblib.load('trained_model.pkl')

# Define the prediction function
def predict_cvd(Age, Gender, BMI, Blood_pressure, Cholesterol, Bacteroides_fragilis, Faecalibacterium_prausnitzii,
                Akkermansia_muciniphila, Ruminococcus_bromii, Microbiome_Diversity):
    
    try:
        # Convert Gender to numerical (assuming Male: 0, Female: 1)
        Gender = 1 if Gender.lower() == 'female' else 0
        
        # Prepare the input data as a dataframe with correctly capitalized feature names
        input_data = pd.DataFrame({
            'Age': [Age],
            'Gender': [Gender],
            'BMI': [BMI],
            'Blood_pressure': [Blood_pressure],
            'Cholesterol': [Cholesterol],  # Note the capital "C"
            'Bacteroides_fragilis': [Bacteroides_fragilis],
            'Faecalibacterium_prausnitzii': [Faecalibacterium_prausnitzii],
            'Akkermansia_muciniphila': [Akkermansia_muciniphila],
            'Ruminococcus_bromii': [Ruminococcus_bromii],
            'Microbiome_Diversity': [Microbiome_Diversity]
        })

        # Make prediction
        prediction = model.predict(input_data)
        
        # Return result based on prediction
        return "Cardiovascular Disease Detected" if prediction[0] == 1 else "No Cardiovascular Disease Detected"

    except Exception as e:
        return f"An error occurred: {str(e)}"

# Define Gradio inputs with proper ranges and selections
inputs = [
    gr.Slider(18, 100, step=1, value=50, label="Age"),
    gr.Dropdown(['Male', 'Female'], label="Gender"),
    gr.Slider(10.0, 50.0, step=0.1, value=25.0, label="BMI"),
    gr.Slider(90, 200, step=1, value=120, label="Blood Pressure"),
    gr.Slider(100, 300, step=1, value=180, label="Cholesterol"),  # Corrected capitalization
    gr.Slider(0.0, 10.0, step=0.1, value=5.0, label="Bacteroides Fragilis Level"),
    gr.Slider(0.0, 10.0, step=0.1, value=5.0, label="Faecalibacterium Prausnitzii Level"),
    gr.Slider(0.0, 10.0, step=0.1, value=5.0, label="Akkermansia Muciniphila Level"),
    gr.Slider(0.0, 10.0, step=0.1, value=5.0, label="Ruminococcus Bromii Level"),
    gr.Slider(0.0, 10.0, step=0.1, value=5.0, label="Microbiome Diversity"),
]

# Define Gradio interface
iface = gr.Interface(fn=predict_cvd, inputs=inputs, outputs="text", title="Cardiovascular Disease Prediction")

# Launch the interface
iface.launch()