CRSArena / script /ask.py
Nolwenn
Initial commit
b599481
raw
history blame
17.5 kB
import argparse
import copy
import json
import os
import random
import sys
import time
import typing
import warnings
import openai
import tiktoken
from loguru import logger
from tenacity import Retrying, _utils, retry_if_not_exception_type
from tenacity.stop import stop_base
from tenacity.wait import wait_base
sys.path.append("..")
from model.crs_model import CRSModel
warnings.filterwarnings("ignore")
def get_exist_dialog_set():
exist_id_set = set()
for file in os.listdir(save_dir):
file_id = os.path.splitext(file)[0]
exist_id_set.add(file_id)
return exist_id_set
def my_before_sleep(retry_state):
logger.debug(
f"Retrying: attempt {retry_state.attempt_number} ended with: {retry_state.outcome}, spend {retry_state.seconds_since_start} in total"
)
class my_wait_exponential(wait_base):
def __init__(
self,
multiplier: typing.Union[int, float] = 1,
max: _utils.time_unit_type = _utils.MAX_WAIT, # noqa
exp_base: typing.Union[int, float] = 2,
min: _utils.time_unit_type = 0, # noqa
) -> None:
self.multiplier = multiplier
self.min = _utils.to_seconds(min)
self.max = _utils.to_seconds(max)
self.exp_base = exp_base
def __call__(self, retry_state: "RetryCallState") -> float:
if retry_state.outcome == openai.error.Timeout:
return 0
try:
exp = self.exp_base ** (retry_state.attempt_number - 1)
result = self.multiplier * exp
except OverflowError:
return self.max
return max(max(0, self.min), min(result, self.max))
class my_stop_after_attempt(stop_base):
"""Stop when the previous attempt >= max_attempt."""
def __init__(self, max_attempt_number: int) -> None:
self.max_attempt_number = max_attempt_number
def __call__(self, retry_state: "RetryCallState") -> bool:
if retry_state.outcome == openai.error.Timeout:
retry_state.attempt_number -= 1
return retry_state.attempt_number >= self.max_attempt_number
def annotate_completion(prompt, logit_bias=None):
if logit_bias is None:
logit_bias = {}
request_timeout = 20
for attempt in Retrying(
reraise=True,
retry=retry_if_not_exception_type(
(
openai.error.InvalidRequestError,
openai.error.AuthenticationError,
)
),
wait=my_wait_exponential(min=1, max=60),
stop=(my_stop_after_attempt(8)),
):
with attempt:
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0,
max_tokens=128,
stop="Recommender",
logit_bias=logit_bias,
request_timeout=request_timeout,
)["choices"][0]["text"]
request_timeout = min(300, request_timeout * 2)
return response
def get_instruction(dataset):
if dataset == "redial_eval":
item_with_year = True
init_ask_instruction = """To recommend me items that I will accept, you can choose one of the following options.
A: ask my preference for genre
B: ask my preference for actor
C: ask my preference for director
D: I can directly give recommendations
Please enter the option character. Please only response a character."""
ask_instruction = """To recommend me items that I will accept, you can choose one of the following options.
A: ask my preference for genre
B: ask my preference for actor
C: ask my preference for director
D: I can directly give recommendations
You have selected {}, do not repeat them. Please enter the option character."""
option2attr = {
"A": "genre",
"B": "star",
"C": "director",
"D": "recommend",
}
option2temaplte = {
"A": "Which genre do you like?",
"B": "Which star do you like?",
"C": "Which director do you like?",
}
elif dataset == "opendialkg_eval":
item_with_year = False
init_ask_instruction = """To recommend me items that I will accept, you can choose one of the following options.
A: ask my preference for genre
B: ask my preference for actor
C: ask my preference for director
D: ask my preference for writer
E: I can directly give recommendations
Please enter the option character. Please only response a character."""
ask_instruction = """To recommend me items that I will accept, you can choose one of the following options.
A: ask my preference for genre
B: ask my preference for actor
C: ask my preference for director
D: ask my preference for writer
E: I can directly give recommendations
You have selected {}, do not repeat them. Please enter the option character."""
option2attr = {
"A": "genre",
"B": "actor",
"C": "director",
"D": "writer",
"E": "recommend",
}
option2temaplte = {
"A": "Which genre do you like?",
"B": "Which actor do you like?",
"C": "Which director do you like?",
"D": "Which writer do you like?",
}
else:
raise Exception("do not support this dataset")
if item_with_year is True:
rec_instruction = "Please give me 10 recommendations according to my preference (Format: no. title (year if exists). No other things except the movie list in your response)."
else:
rec_instruction = "Please give me 10 recommendations according to my preference (Format: no. title. No other things except the item list in your response). You can recommend mentioned items in our dialog."
return (
init_ask_instruction,
ask_instruction,
rec_instruction,
option2attr,
option2temaplte,
)
def get_model_args(model_name):
if model_name == "kbrd":
args_dict = {
"debug": args.debug,
"kg_dataset": args.kg_dataset,
"hidden_size": args.hidden_size,
"entity_hidden_size": args.entity_hidden_size,
"num_bases": args.num_bases,
"rec_model": args.rec_model,
"conv_model": args.conv_model,
"context_max_length": args.context_max_length,
"entity_max_length": args.entity_max_length,
"tokenizer_path": args.tokenizer_path,
"encoder_layers": args.encoder_layers,
"decoder_layers": args.decoder_layers,
"text_hidden_size": args.text_hidden_size,
"attn_head": args.attn_head,
"resp_max_length": args.resp_max_length,
"seed": args.seed,
}
elif model_name == "barcor":
args_dict = {
"debug": args.debug,
"kg_dataset": args.kg_dataset,
"rec_model": args.rec_model,
"conv_model": args.conv_model,
"context_max_length": args.context_max_length,
"resp_max_length": args.resp_max_length,
"tokenizer_path": args.tokenizer_path,
"seed": args.seed,
}
elif model_name == "unicrs":
args_dict = {
"debug": args.debug,
"seed": args.seed,
"kg_dataset": args.kg_dataset,
"tokenizer_path": args.tokenizer_path,
"context_max_length": args.context_max_length,
"entity_max_length": args.entity_max_length,
"resp_max_length": args.resp_max_length,
"text_tokenizer_path": args.text_tokenizer_path,
"rec_model": args.rec_model,
"conv_model": args.conv_model,
"model": args.model,
"num_bases": args.num_bases,
"text_encoder": args.text_encoder,
}
elif model_name == "chatgpt":
args_dict = {
"seed": args.seed,
"debug": args.debug,
"kg_dataset": args.kg_dataset,
}
return args_dict
if __name__ == "__main__":
local_time = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument("--api_key")
parser.add_argument(
"--dataset", type=str, choices=["redial_eval", "opendialkg_eval"]
)
parser.add_argument("--turn_num", type=int, default=5)
parser.add_argument(
"--crs_model",
type=str,
choices=["kbrd", "barcor", "unicrs", "chatgpt"],
)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--kg_dataset", type=str, choices=["redial", "opendialkg"])
# model_detailed
parser.add_argument("--hidden_size", type=int)
parser.add_argument("--entity_hidden_size", type=int)
parser.add_argument("--num_bases", type=int, default=8)
parser.add_argument("--context_max_length", type=int)
parser.add_argument("--entity_max_length", type=int)
# model
parser.add_argument("--rec_model", type=str)
parser.add_argument("--conv_model", type=str)
# conv
parser.add_argument("--tokenizer_path", type=str)
parser.add_argument("--encoder_layers", type=int)
parser.add_argument("--decoder_layers", type=int)
parser.add_argument("--text_hidden_size", type=int)
parser.add_argument("--attn_head", type=int)
parser.add_argument("--resp_max_length", type=int)
# prompt
parser.add_argument("--model", type=str)
parser.add_argument("--text_tokenizer_path", type=str)
parser.add_argument("--text_encoder", type=str)
args = parser.parse_args()
openai.api_key = args.api_key
save_dir = f"../save_{args.turn_num}/ask/{args.crs_model}/{args.dataset}"
os.makedirs(save_dir, exist_ok=True)
random.seed(args.seed)
# recommender
recommendation_template = "I would recommend the following items:\n\n{}"
# recommender
model_args = get_model_args(args.crs_model)
recommender = CRSModel(crs_model=args.crs_model, **model_args)
# seeker
(
init_ask_instruction,
ask_instruction,
rec_instruction,
option2attr,
option2template,
) = get_instruction(args.dataset)
options = list(option2attr.keys())
# scorer
persuasiveness_template = """Does the explanation make you want to accept the recommendation? Please give your score.
If mention one of [{}], give 2.
Else if you think recommended items are worse than [{}], give 0.
Else if you think recommended items are comparable to [{}] according to the explanation, give 1.
Else if you think recommended items are better than [{}] according to the explanation, give 2.
Only answer the score number."""
encoding = tiktoken.encoding_for_model("text-davinci-003")
logit_bias = {encoding.encode(str(score))[0]: 10 for score in range(3)}
with open(f"../data/{args.kg_dataset}/entity2id.json", "r", encoding="utf-8") as f:
entity2id = json.load(f)
id2entity = {}
for k, v in entity2id.items():
id2entity[int(v)] = k
entity_list = list(entity2id.keys())
name2id = {}
with open(f"../data/{args.kg_dataset}/id2info.json", "r", encoding="utf-8") as f:
id2info = json.load(f)
for k, v in id2info.items():
name2id[v["name"]] = k
dialog_id2data = {}
with open(
f"../data/{args.dataset}/test_data_processed.jsonl", encoding="utf-8"
) as f:
lines = f.readlines()
for line in lines:
line = json.loads(line)
dialog_id = str(line["dialog_id"]) + "_" + str(line["turn_id"])
dialog_id2data[dialog_id] = line
dialog_id_set = set(dialog_id2data.keys()) - get_exist_dialog_set()
while len(dialog_id_set) > 0:
print(len(dialog_id_set))
dialog_id = random.choice(tuple(dialog_id_set))
data = dialog_id2data[dialog_id]
conv_dict = copy.deepcopy(data) # for model
goal_item_list = [f'"{item}"' for item in conv_dict["rec"]]
goal_item_str = ", ".join(goal_item_list)
rec_labels = [name2id[rec] for rec in data["rec"]]
context_dict = [] # for save
for i, text in enumerate(conv_dict["context"]):
if len(text) == 0:
continue
if i % 2 == 0:
role_str = "user"
else:
role_str = "assistant"
context_dict.append({"role": role_str, "content": text})
# dialog state
rec_success = False
asked_options = []
option2index = {"A": 0, "B": 1, "C": 2, "D": 3, "E": 4}
if args.kg_dataset == "redial":
state = [0, 0, 0, 0]
elif args.kg_dataset == "opendialkg":
state = [0, 0, 0, 0, 0]
for i in range(0, args.turn_num):
# seeker
# choose option
if args.crs_model == "chatgpt":
conv_dict["context"].append(init_ask_instruction)
# recommender
# options (list of str): available options, generate one of them
gen_inputs, recommender_text = recommender.get_conv(conv_dict)
if args.crs_model != "chatgpt":
recommender_choose = recommender.get_choice(gen_inputs, options, state)
else:
recommender_choose = recommender.get_choice(
gen_inputs, options, state, conv_dict
)
selected_option = recommender_choose
if selected_option == options[-1]: # choose to rec
# recommender
rec_items, rec_truth = recommender.get_rec(conv_dict)
rec_pred = rec_items[0]
rec_items_str = ""
for j, rec_item in enumerate(rec_pred[:50]):
rec_items_str += f"{i + 1}: {id2entity[rec_item]}\n"
recommender_text = recommendation_template.format(rec_items_str)
# judge whether success
for rec_label in rec_truth:
if rec_label in rec_pred:
rec_success = True
break
context_dict.append(
{
"role": "assistant",
"content": recommender_text,
"rec_items": rec_pred,
"rec_success": rec_success,
"option": selected_option,
}
)
conv_dict["context"].append(recommender_text)
# seeker
if rec_success is True:
seeker_text = "That's perfect, thank you!"
else:
seeker_text = "I don't like them."
context_dict.append({"role": "user", "content": seeker_text})
conv_dict["context"].append(seeker_text)
else: # choose to ask
recommender_text = option2template[selected_option]
context_dict.append(
{
"role": "assistant",
"content": recommender_text,
"option": selected_option,
}
)
conv_dict["context"].append(recommender_text)
# seeker
ask_attr = option2attr[selected_option]
# update state
state[option2index[selected_option]] = -1e5
ans_attr_list = []
for label_id in rec_labels:
if str(label_id) in id2info and ask_attr in id2info[str(label_id)]:
ans_attr_list.extend(id2info[str(label_id)][ask_attr])
if len(ans_attr_list) > 0:
seeker_text = ", ".join(list(set(ans_attr_list)))
else:
seeker_text = "Sorry, no information about this, please choose another option."
context_dict.append(
{
"role": "user",
"content": seeker_text,
"entity": ans_attr_list,
}
)
conv_dict["context"].append(seeker_text)
conv_dict["entity"] += ans_attr_list
if rec_success is True:
break
# score persuasiveness
# seeker_prompt = ''
# for turn_dict in context_dict:
# if turn_dict['role'] == 'user':
# role_str = 'Seeker'
# else:
# role_str = 'Recommender'
# seeker_prompt += f'{role_str}: {turn_dict["content"]}\n'
# persuasiveness_str = persuasiveness_template.format(goal_item_str, goal_item_str, goal_item_str,
# goal_item_str)
# prompt_str_for_persuasiveness = seeker_prompt + persuasiveness_str
# prompt_str_for_persuasiveness += '\nSeeker:'
# persuasiveness_score = annotate_completion(prompt_str_for_persuasiveness, logit_bias).strip()
# save
conv_dict["context"] = context_dict
data["simulator_dialog"] = conv_dict
with open(f"{save_dir}/{dialog_id}.json", "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
dialog_id_set -= get_exist_dialog_set()