CRSArena / src /model /BARCOR.py
Nol00's picture
Update src/model/BARCOR.py
2247f6e verified
raw
history blame
10.1 kB
import json
import sys
from collections import defaultdict
from typing import Any, Dict, List, Tuple
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
sys.path.append("..")
from src.model.barcor.barcor_model import BartForSequenceClassification
from src.model.barcor.kg_bart import KGForBART
class BARCOR:
def __init__(
self,
seed,
kg_dataset,
debug,
tokenizer_path,
context_max_length,
rec_model,
conv_model,
resp_max_length,
):
self.seed = seed
if self.seed is not None:
set_seed(self.seed)
self.kg_dataset = kg_dataset
self.debug = debug
self.tokenizer_path = tokenizer_path
self.tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_path)
self.tokenizer.truncation_side = "left"
self.context_max_length = context_max_length
self.padding = "max_length"
self.pad_to_multiple_of = 8
self.accelerator = Accelerator(
device_placement=False, mixed_precision="fp16"
)
self.device = self.accelerator.device
self.rec_model = rec_model
self.conv_model = conv_model
# conv
self.resp_max_length = resp_max_length
self.kg = KGForBART(
kg_dataset=self.kg_dataset, debug=self.debug
).get_kg_info()
self.crs_rec_model = BartForSequenceClassification.from_pretrained(
self.rec_model, num_labels=self.kg["num_entities"]
).to(self.device)
self.crs_conv_model = AutoModelForSeq2SeqLM.from_pretrained(
self.conv_model
).to(self.device)
self.crs_conv_model = self.accelerator.prepare(self.crs_conv_model)
self.kg_dataset_path = f"data/{self.kg_dataset}"
with open(
f"{self.kg_dataset_path}/entity2id.json", "r", encoding="utf-8"
) as f:
self.entity2id = json.load(f)
def get_rec(self, conv_dict):
# dataset
text_list = []
turn_idx = 0
for utt in conv_dict["context"]:
if utt != "":
text = ""
if turn_idx % 2 == 0:
text += "User: "
else:
text += "System: "
text += utt
text_list.append(text)
turn_idx += 1
context = f"{self.tokenizer.sep_token}".join(text_list)
context_ids = self.tokenizer.encode(
context, truncation=True, max_length=self.context_max_length
)
data_list = []
if "rec" not in conv_dict.keys() or not conv_dict["rec"]:
# Interactive mode: the ground truth is not provided
data_dict = {
"context": context_ids,
"entity": [
self.entity2id[ent]
for ent in conv_dict["entity"]
if ent in self.entity2id
],
}
if "template" in conv_dict:
data_dict["template"] = conv_dict["template"]
data_list.append(data_dict)
else:
for rec in conv_dict["rec"]:
if rec in self.entity2id:
data_dict = {
"context": context_ids,
"entity": [
self.entity2id[ent]
for ent in conv_dict["entity"]
if ent in self.entity2id
],
"rec": self.entity2id[rec],
}
if "template" in conv_dict:
data_dict["template"] = conv_dict["template"]
data_list.append(data_dict)
# dataloader
input_dict = defaultdict(list)
label_list = []
for data in data_list:
input_dict["input_ids"].append(data["context"])
if "rec" in data.keys():
label_list.append(data["rec"])
input_dict = self.tokenizer.pad(
input_dict,
max_length=self.context_max_length,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
)
if len(label_list) > 0:
input_dict["labels"] = label_list
for k, v in input_dict.items():
if not isinstance(v, torch.Tensor):
input_dict[k] = torch.as_tensor(v, device=self.device)
labels = (
input_dict["labels"].tolist() if "labels" in input_dict else None
)
self.crs_rec_model.eval()
outputs = self.crs_rec_model(**input_dict)
item_ids = torch.as_tensor(self.kg["item_ids"], device=self.device)
logits = outputs["logits"][:, item_ids]
ranks = torch.topk(logits, k=50, dim=-1).indices
preds = item_ids[ranks].tolist()
return preds, labels
def get_conv(self, conv_dict):
text_list = []
turn_idx = 0
for utt in conv_dict["context"]:
if utt != "":
text = ""
if turn_idx % 2 == 0:
text += "User: "
else:
text += "System: "
text += utt
text_list.append(text)
turn_idx += 1
context = f"{self.tokenizer.sep_token}".join(text_list)
context_ids = self.tokenizer.encode(
context, truncation=True, max_length=self.context_max_length
)
if turn_idx % 2 == 0:
user_str = "User: "
else:
user_str = "System: "
resp = user_str + conv_dict["resp"]
resp_ids = self.tokenizer.encode(
resp, truncation=True, max_length=self.resp_max_length
)
data_dict = {
"context": context_ids,
"resp": resp_ids,
}
input_dict = defaultdict(list)
label_dict = defaultdict(list)
input_dict["input_ids"] = data_dict["context"]
label_dict["input_ids"] = data_dict["resp"]
input_dict = self.tokenizer.pad(
input_dict,
max_length=self.context_max_length,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
)
label_dict = self.tokenizer.pad(
label_dict,
max_length=self.context_max_length,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
)["input_ids"]
input_dict["labels"] = label_dict
for k, v in input_dict.items():
if not isinstance(v, torch.Tensor):
input_dict[k] = torch.as_tensor(
v, device=self.device
).unsqueeze(0)
self.crs_conv_model.eval()
gen_args = {
"min_length": 0,
"max_length": self.resp_max_length,
"num_beams": 1,
"no_repeat_ngram_size": 3,
"encoder_no_repeat_ngram_size": 3,
}
gen_seqs = self.accelerator.unwrap_model(self.crs_conv_model).generate(
**input_dict, **gen_args
)
gen_str = self.tokenizer.decode(gen_seqs[0], skip_special_tokens=True)
return input_dict, gen_str
def get_choice(self, gen_inputs, options, state, conv_dict=None):
outputs = self.accelerator.unwrap_model(self.crs_conv_model).generate(
**gen_inputs,
min_new_tokens=5,
max_new_tokens=5,
num_beams=1,
return_dict_in_generate=True,
output_scores=True,
)
option_token_ids = [
self.tokenizer.encode(f" {op}", add_special_tokens=False)[0]
for op in options
]
option_scores = outputs.scores[-2][0][option_token_ids]
state = torch.as_tensor(
state, device=self.device, dtype=option_scores.dtype
)
option_scores += state
option_with_max_score = options[torch.argmax(option_scores)]
return option_with_max_score
def get_response(
self,
conv_dict: Dict[str, Any],
id2entity: Dict[int, str],
options: Tuple[str, Dict[str, str]],
state: List[float],
) -> Tuple[str, List[float]]:
"""Generates a response given a conversation context.
Args:
conv_dict: Conversation context.
id2entity: Mapping from entity id to entity name.
options: Prompt with options and dictionary of options.
state: State of the option choices.
Returns:
Generated response and updated state.
"""
generated_inputs, generated_response = self.get_conv(conv_dict)
options_letter = list(options[1].keys())
# Get the choice between recommend and generate
choice = self.get_choice(generated_inputs, options_letter, state)
if choice == options_letter[-1]:
# Generate a recommendation
recommended_items, _ = self.get_rec(conv_dict)
recommended_items_str = ""
for i, item_id in enumerate(recommended_items[0][:3]):
recommended_items_str += f"{i+1}: {id2entity[item_id]} \n"
response = (
"I would recommend the following items: \n"
f"{recommended_items_str}"
)
else:
# Original : Generate a response to ask for preferences. The
# fallback is to use the generated response.
# response = (
# options[1].get(choice, {}).get("template", generated_response)
# )
generated_response = generated_response.lstrip("System;:")
response = generated_response.strip()
# Update the state. Hack: penalize the choice to reduce the
# likelihood of selecting the same choice again
state[options_letter.index(choice)] = -1e5
return response, state