CRSArena / src /model /KBRD.py
Nolwenn
Initial commit
b599481
raw
history blame
12.8 kB
import json
import sys
from collections import defaultdict
from typing import Any, Dict, List, Tuple
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from transformers import AutoTokenizer, BartConfig
sys.path.append("..")
from src.model.kbrd.kbrd_model import KBRDforConv, KBRDforRec
from src.model.kbrd.kg_kbrd import KGForKBRD
from src.model.utils import padded_tensor
class KBRD:
def __init__(
self,
seed,
kg_dataset,
debug,
hidden_size,
entity_hidden_size,
num_bases,
rec_model,
conv_model,
context_max_length,
tokenizer_path,
encoder_layers,
decoder_layers,
text_hidden_size,
attn_head,
resp_max_length,
entity_max_length,
):
self.seed = seed
if self.seed is not None:
set_seed(self.seed)
self.kg_dataset = kg_dataset
# model detailed
self.debug = debug
self.hidden_size = hidden_size
self.entity_hidden_size = entity_hidden_size
self.num_bases = num_bases
self.context_max_length = context_max_length
self.entity_max_length = entity_max_length
# model
self.rec_model = rec_model
self.conv_model = conv_model
# conv
self.tokenizer_path = tokenizer_path
self.tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_path)
self.encoder_layers = encoder_layers
self.decoder_layers = decoder_layers
self.text_hidden_size = text_hidden_size
self.attn_head = attn_head
self.resp_max_length = resp_max_length
self.padding = "max_length"
self.pad_to_multiple_of = 8
self.kg_dataset_path = f"data/{self.kg_dataset}"
with open(
f"{self.kg_dataset_path}/entity2id.json", "r", encoding="utf-8"
) as f:
self.entity2id = json.load(f)
# Initialize the accelerator.
self.accelerator = Accelerator(
device_placement=False, mixed_precision="fp16"
)
self.device = self.accelerator.device
self.kg = KGForKBRD(
kg_dataset=self.kg_dataset, debug=self.debug
).get_kg_info()
self.pad_id = self.kg["pad_id"]
# rec model
self.crs_rec_model = KBRDforRec(
hidden_size=self.hidden_size,
num_relations=self.kg["num_relations"],
num_bases=self.num_bases,
num_entities=self.kg["num_entities"],
)
if self.rec_model is not None:
self.crs_rec_model.load(self.rec_model)
self.crs_rec_model = self.crs_rec_model.to(self.device)
self.crs_rec_model = self.accelerator.prepare(self.crs_rec_model)
# conv model
config = BartConfig.from_pretrained(
self.conv_model,
encoder_layers=self.encoder_layers,
decoder_layers=self.decoder_layers,
hidden_size=self.text_hidden_size,
encoder_attention_heads=self.attn_head,
decoder_attention_heads=self.attn_head,
encoder_ffn_dim=self.text_hidden_size,
decoder_ffn_dim=self.text_hidden_size,
forced_bos_token_id=None,
forced_eos_token_id=None,
)
self.crs_conv_model = KBRDforConv(
config, user_hidden_size=self.entity_hidden_size
).to(self.device)
if self.conv_model is not None:
self.crs_conv_model = KBRDforConv.from_pretrained(
self.conv_model, user_hidden_size=self.entity_hidden_size
).to(self.device)
self.crs_conv_model = self.accelerator.prepare(self.crs_conv_model)
def get_rec(self, conv_dict):
data_dict = {
"item": [
self.entity2id[rec]
for rec in conv_dict["rec"]
if rec in self.entity2id
],
}
entity_ids = (
[
self.entity2id[ent]
for ent in conv_dict["entity"][-self.entity_max_length :]
if ent in self.entity2id
],
)
if "dialog_id" in conv_dict:
data_dict["dialog_id"] = conv_dict["dialog_id"]
if "turn_id" in conv_dict:
data_dict["turn_id"] = conv_dict["turn_id"]
if "template" in conv_dict:
data_dict["template"] = conv_dict["template"]
# kg
edge_index, edge_type = torch.as_tensor(
self.kg["edge_index"], device=self.device
), torch.as_tensor(self.kg["edge_type"], device=self.device)
entity_ids = padded_tensor(
entity_ids,
pad_id=self.pad_id,
pad_tail=True,
max_length=self.entity_max_length,
device=self.device,
debug=self.debug,
)
data_dict["entity"] = {
"entity_ids": entity_ids,
"entity_mask": torch.ne(entity_ids, self.pad_id),
}
# infer
self.crs_rec_model.eval()
with torch.no_grad():
data_dict["entity"]["edge_index"] = edge_index
data_dict["entity"]["edge_type"] = edge_type
outputs = self.crs_rec_model(
**data_dict["entity"], reduction="mean"
)
logits = outputs["logit"][:, self.kg["item_ids"]]
ranks = torch.topk(logits, k=50, dim=-1).indices.tolist()
preds = [
[self.kg["item_ids"][rank] for rank in rank_list]
for rank_list in ranks
]
labels = data_dict["item"]
return preds, labels
def get_conv(self, conv_dict):
self.tokenizer.truncation_side = "left"
context_list = conv_dict["context"]
context = f"{self.tokenizer.sep_token}".join(context_list)
context_ids = self.tokenizer.encode(
context, truncation=True, max_length=self.context_max_length
)
context_batch = defaultdict(list)
context_batch["input_ids"] = context_ids
context_ids = self.tokenizer.pad(
context_batch,
max_length=self.context_max_length,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
)
self.tokenizer.truncation_side = "right"
resp = conv_dict["resp"]
resp_batch = defaultdict(list)
resp_ids = self.tokenizer.encode(
resp, truncation=True, max_length=self.resp_max_length
)
resp_batch["input_ids"] = resp_ids
resp_batch = self.tokenizer.pad(
resp_batch,
max_length=self.resp_max_length,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
)
context_batch["labels"] = resp_batch["input_ids"]
for k, v in context_batch.items():
if not isinstance(v, torch.Tensor):
context_batch[k] = torch.as_tensor(
v, device=self.device
).unsqueeze(0)
entity_list = (
[
self.entity2id[ent]
for ent in conv_dict["entity"][-self.entity_max_length :]
if ent in self.entity2id
],
)
entity_ids = padded_tensor(
entity_list,
pad_id=self.pad_id,
pad_tail=True,
device=self.device,
debug=self.debug,
max_length=self.context_max_length,
)
entity = {
"entity_ids": entity_ids,
"entity_mask": torch.ne(entity_ids, self.pad_id),
}
data_dict = {"context": context_batch, "entity": entity}
edge_index, edge_type = torch.as_tensor(
self.kg["edge_index"], device=self.device
), torch.as_tensor(self.kg["edge_type"], device=self.device)
node_embeds = self.crs_rec_model.get_node_embeds(edge_index, edge_type)
user_embeds = self.crs_rec_model(
**data_dict["entity"], node_embeds=node_embeds
)["user_embeds"]
gen_inputs = {
**data_dict["context"],
"decoder_user_embeds": user_embeds,
}
gen_inputs.pop("labels")
gen_args = {
"min_length": 0,
"max_length": self.resp_max_length,
"num_beams": 1,
"no_repeat_ngram_size": 3,
"encoder_no_repeat_ngram_size": 3,
}
gen_seqs = self.accelerator.unwrap_model(self.crs_conv_model).generate(
**gen_inputs, **gen_args
)
gen_str = self.tokenizer.decode(gen_seqs[0], skip_special_tokens=True)
return gen_inputs, gen_str
def get_choice(self, gen_inputs, options, state, conv_dict=None):
state = torch.as_tensor(state, device=self.device)
outputs = self.accelerator.unwrap_model(self.crs_conv_model).generate(
**gen_inputs,
min_new_tokens=2,
max_new_tokens=2,
num_beams=1,
return_dict_in_generate=True,
output_scores=True,
)
option_token_ids = [
self.tokenizer.encode(op, add_special_tokens=False)[0]
for op in options
]
option_scores = outputs.scores[-1][0][option_token_ids]
option_scores += state
option_with_max_score = options[torch.argmax(option_scores)]
return option_with_max_score
def get_response(
self,
conv_dict: Dict[str, Any],
id2entity: Dict[int, str],
options: Tuple[str, Dict[str, str]],
state: List[float],
) -> Tuple[str, List[float]]:
"""Generates a response given a conversation context.
The method is based on the logic of the ask mode (i.e., see
`scripts/ask.py`). It consists of two steps: (1) choose to either
recommend items or generate a response, and (2) execute the chosen
step. Slightly deviates from the original implementation by not using
templates.
Args:
conv_dict: Conversation context.
id2entity: Mapping from entity id to entity name.
options: Prompt with options and dictionary of options.
state: State of the option choices.
Returns:
Generated response and updated state.
"""
generated_inputs, generated_response = self.get_conv(conv_dict)
options_letter = list(options[1].keys())
# Get the choice between recommend and generate
choice = self.get_choice(generated_inputs, options_letter, state)
if choice == options_letter[-1]:
# Generate a recommendation
recommended_items, _ = self.get_rec(conv_dict)
recommended_items_str = ""
for i, item_id in enumerate(recommended_items[0][:3]):
recommended_items_str += f"{i+1}: {id2entity[item_id]} \n"
response = (
"I would recommend the following items: \n"
f"{recommended_items_str}"
)
else:
# Original : Generate a response to ask for preferences. The
# fallback is to use the generated response.
# response = (
# options[1].get(choice, {}).get("template", generated_response)
# )
response = generated_response
# Update the state. Hack: penalize the choice to reduce the
# likelihood of selecting the same choice again
state[options_letter.index(choice)] += -1e5
return response, state
if __name__ == "__main__":
# print(sys.path)
kbrd = KBRD(
seed=42,
kg_dataset="redial",
debug=False,
hidden_size=128,
num_bases=8,
rec_model=f"/mnt/tangxinyu/crs/eval_model/redial_rec/best",
conv_model="/mnt/tangxinyu/crs/eval_model/redial_conv/final/",
encoder_layers=2,
decoder_layers=2,
attn_head=2,
resp_max_length=128,
text_hidden_size=300,
entity_hidden_size=128,
context_max_length=200,
entity_max_length=32,
tokenizer_path="../utils/tokenizer/bart-base",
)
# print(kbrd)
context_dict = {
"dialog_id": "20001",
"turn_id": 1,
"context": ["Hi I am looking for a movie like Super Troopers (2001)"],
"entity": ["Super Troopers (2001)"],
"rec": ["Police Academy (1984)"],
"resp": "You should watch Police Academy (1984)",
"template": [
"Hi I am looking for a movie like <mask>",
"You should watch <mask>",
],
}
preds, labels = kbrd.get_rec(context_dict)
gen_seq = kbrd.get_conv(context_dict)