File size: 3,415 Bytes
30d349c
 
 
 
 
 
 
 
 
 
 
 
17d7a6f
30d349c
 
 
 
0d707b6
30d349c
 
 
 
17d7a6f
30d349c
 
 
17d7a6f
30d349c
 
 
 
 
 
 
17d7a6f
30d349c
17d7a6f
30d349c
 
 
 
 
 
17d7a6f
30d349c
 
 
 
 
 
 
 
 
 
 
 
 
17d7a6f
30d349c
 
17d7a6f
30d349c
 
 
d3f8557
30d349c
 
 
 
 
 
2c1a214
30d349c
d3f8557
 
 
 
 
 
 
 
 
30d349c
d3f8557
 
30d349c
d3f8557
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import requests
import json
import re

class VectaraQuery():
    def __init__(self, api_key: str, customer_id: str, corpus_id: str, prompt_name: str = None):
        self.customer_id = customer_id
        self.corpus_id = corpus_id
        self.api_key = api_key
        self.prompt_name = prompt_name if prompt_name else "vectara-experimental-summary-ext-2023-12-11-large"
        self.conv_id = None

    def get_body(self, user_response: str):
        corpora_key_list = [{
            'customer_id': self.customer_id, 'corpus_id': self.corpus_id, 'lexical_interpolation_config': {'lambda': 0.025}
        }]

        user_response = user_response.replace('"', '\\"')  # Escape double quotes
        prompt = f'''
        [
            {{
                "role": "system",
                "content": "You are an assistant that provides information about drink names based on a given corpus."
            }},
            {{
                "role": "user",
                "content": "{user_response}"
            }}
        ]
        '''

        return {
            'query': [
                { 
                    'query': user_response,
                    'start': 0,
                    'numResults': 10,
                    'corpusKey': corpora_key_list,
                    'context_config': {
                        'sentences_before': 2,
                        'sentences_after': 2,
                        'start_tag': "%START_SNIPPET%",
                        'end_tag': "%END_SNIPPET%",
                    }
                } 
            ]
        }

    def get_headers(self):
        return {
            "Content-Type": "application/json",
            "Accept": "application/json",
            "customer-id": self.customer_id,
            "x-api-key": self.api_key,
            "grpc-timeout": "60S"
        }

    def submit_query(self, query_str: str):

        endpoint = f"https://api.vectara.io/v1/stream-query"
        body = self.get_body(query_str)
        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers(), stream=True) 
        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            return "Sorry, something went wrong. Please try again later."

        chunks = []
        accumulated_text = ""  # Initialize text accumulation
        pattern_max_length = 50  # Example heuristic
        for line in response.iter_lines():
            if line:  # filter out keep-alive new lines
                data = json.loads(line.decode('utf-8'))                
                res = data['result']
                response_set = res['responseSet']
                
                if response_set:
                    for result in response_set:
                        text = result['text']
                        # Extract relevant information from the text
                        reason = re.search(r"Reason Why it Can't be Used: (.*?)\n", text).group(1)
                        alternative = re.search(r"Alternative: (.*?)\n", text).group(1)
                        notes = re.search(r"Notes: (.*?)\n", text).group(1)
                        
                        response = f"Reason: {reason}\nAlternative: {alternative}\nNotes: {notes}"
                        return response

        return "No relevant information found."